
The integral $\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx$ is equal to (where $c$ is constant of integration)
A. $\dfrac{1}{2}\sin \sqrt {{{\left( {2x + 1} \right)}^2} + 5} + c$
B. $\dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$
C. $\dfrac{1}{2}\cos \sqrt {{{\left( {2x + 1} \right)}^2} + 5} + c$
D. $\dfrac{1}{2}\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$
Answer
232.8k+ views
Hint: The expansion of the term under root in the numerator is the same as the term under root in the denominator. Also, the differentiation of the term is present in the numerator. So, make a substitution for it and use the formula of integration to find the value of the integral.
Formula Used:
$\dfrac{d}{{dx}}\left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} \pm \dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}$, where $f\left( x \right)$ and $g\left( x \right)$ are two functions of $x$
$\dfrac{d}{{dx}}\left\{ {cf\left( x \right)} \right\} = c\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$, where $c$ is a constant
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, where $n$ is a real number
and the derivative of constant is zero.
$\int {\cos tdt} = \sin t + c$, where $c$ is constant of integration
Complete step by step solution:
Expand the term ${\left( {2x - 1} \right)^2} + 5$
${\left( {2x - 1} \right)^2} + 5 = 4{x^2} - 4x + 1 + 5 = 4{x^2} - 4x + 6$
Differentiate the term ${\left( {2x - 1} \right)^2} + 5$
$\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {4{x^2} - 4x + 6} \right)$
$\begin{array}{l} = 4\dfrac{d}{{dx}}\left( {{x^2}} \right) - 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 6 \right)\\ = 4 \times 2x - 4 \times 1 + 0\\ = 8x - 4\\ = 4\left( {2x - 1} \right)\end{array}$
Let ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Differentiating both sides with respect to $x$, we get
$\begin{array}{l}\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {{t^2}} \right)\\ \Rightarrow 4\left( {2x - 1} \right) = 2t\dfrac{{dt}}{{dx}}\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{4} \times 2tdt\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{2}tdt\end{array}$
Substituting ${\left( {2x - 1} \right)^2} + 5 = {t^2}$ and $\left( {2x - 1} \right)dx = \dfrac{1}{2}tdt$ in the given integral, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \int {\dfrac{{\cos \sqrt {4{x^2} - 4x + 6} }}{{\sqrt {4{x^2} - 4x + 6} }}} \left( {2x - 1} \right)dx$
$\begin{array}{l} = \int {\dfrac{{\cos t}}{{{t}}} \times \dfrac{1}{2}{t}dt} \\ = \dfrac{1}{2}\int {\cos tdt} \\ = \dfrac{1}{2}\sin t + c.....(i)\end{array}$
where $c$ is constant of integration
We assumed that ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Find $t$ in terms of $x$
$\begin{array}{l}{t^2} = {\left( {2x - 1} \right)^2} + 5\\ \Rightarrow t = \sqrt {{{\left( {2x - 1} \right)}^2} + 5} \end{array}$
Substitute the expression for $t$ in $(i)$, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$, where $c$ is constant of integration
Option ‘B’ is correct
Note: The constant of integration must be used for indefinite integral. Differentiate the term ${\left( {2x - 1} \right)^2} + 5$ after expanding to avoid mistakes. The integration of cosine is sine but the integration of sine is (-cosine).
Formula Used:
$\dfrac{d}{{dx}}\left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} \pm \dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}$, where $f\left( x \right)$ and $g\left( x \right)$ are two functions of $x$
$\dfrac{d}{{dx}}\left\{ {cf\left( x \right)} \right\} = c\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$, where $c$ is a constant
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, where $n$ is a real number
and the derivative of constant is zero.
$\int {\cos tdt} = \sin t + c$, where $c$ is constant of integration
Complete step by step solution:
Expand the term ${\left( {2x - 1} \right)^2} + 5$
${\left( {2x - 1} \right)^2} + 5 = 4{x^2} - 4x + 1 + 5 = 4{x^2} - 4x + 6$
Differentiate the term ${\left( {2x - 1} \right)^2} + 5$
$\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {4{x^2} - 4x + 6} \right)$
$\begin{array}{l} = 4\dfrac{d}{{dx}}\left( {{x^2}} \right) - 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 6 \right)\\ = 4 \times 2x - 4 \times 1 + 0\\ = 8x - 4\\ = 4\left( {2x - 1} \right)\end{array}$
Let ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Differentiating both sides with respect to $x$, we get
$\begin{array}{l}\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {{t^2}} \right)\\ \Rightarrow 4\left( {2x - 1} \right) = 2t\dfrac{{dt}}{{dx}}\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{4} \times 2tdt\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{2}tdt\end{array}$
Substituting ${\left( {2x - 1} \right)^2} + 5 = {t^2}$ and $\left( {2x - 1} \right)dx = \dfrac{1}{2}tdt$ in the given integral, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \int {\dfrac{{\cos \sqrt {4{x^2} - 4x + 6} }}{{\sqrt {4{x^2} - 4x + 6} }}} \left( {2x - 1} \right)dx$
$\begin{array}{l} = \int {\dfrac{{\cos t}}{{{t}}} \times \dfrac{1}{2}{t}dt} \\ = \dfrac{1}{2}\int {\cos tdt} \\ = \dfrac{1}{2}\sin t + c.....(i)\end{array}$
where $c$ is constant of integration
We assumed that ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Find $t$ in terms of $x$
$\begin{array}{l}{t^2} = {\left( {2x - 1} \right)^2} + 5\\ \Rightarrow t = \sqrt {{{\left( {2x - 1} \right)}^2} + 5} \end{array}$
Substitute the expression for $t$ in $(i)$, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$, where $c$ is constant of integration
Option ‘B’ is correct
Note: The constant of integration must be used for indefinite integral. Differentiate the term ${\left( {2x - 1} \right)^2} + 5$ after expanding to avoid mistakes. The integration of cosine is sine but the integration of sine is (-cosine).
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

