
The integral $\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx$ is equal to (where $c$ is constant of integration)
A. $\dfrac{1}{2}\sin \sqrt {{{\left( {2x + 1} \right)}^2} + 5} + c$
B. $\dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$
C. $\dfrac{1}{2}\cos \sqrt {{{\left( {2x + 1} \right)}^2} + 5} + c$
D. $\dfrac{1}{2}\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$
Answer
162k+ views
Hint: The expansion of the term under root in the numerator is the same as the term under root in the denominator. Also, the differentiation of the term is present in the numerator. So, make a substitution for it and use the formula of integration to find the value of the integral.
Formula Used:
$\dfrac{d}{{dx}}\left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} \pm \dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}$, where $f\left( x \right)$ and $g\left( x \right)$ are two functions of $x$
$\dfrac{d}{{dx}}\left\{ {cf\left( x \right)} \right\} = c\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$, where $c$ is a constant
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, where $n$ is a real number
and the derivative of constant is zero.
$\int {\cos tdt} = \sin t + c$, where $c$ is constant of integration
Complete step by step solution:
Expand the term ${\left( {2x - 1} \right)^2} + 5$
${\left( {2x - 1} \right)^2} + 5 = 4{x^2} - 4x + 1 + 5 = 4{x^2} - 4x + 6$
Differentiate the term ${\left( {2x - 1} \right)^2} + 5$
$\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {4{x^2} - 4x + 6} \right)$
$\begin{array}{l} = 4\dfrac{d}{{dx}}\left( {{x^2}} \right) - 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 6 \right)\\ = 4 \times 2x - 4 \times 1 + 0\\ = 8x - 4\\ = 4\left( {2x - 1} \right)\end{array}$
Let ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Differentiating both sides with respect to $x$, we get
$\begin{array}{l}\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {{t^2}} \right)\\ \Rightarrow 4\left( {2x - 1} \right) = 2t\dfrac{{dt}}{{dx}}\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{4} \times 2tdt\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{2}tdt\end{array}$
Substituting ${\left( {2x - 1} \right)^2} + 5 = {t^2}$ and $\left( {2x - 1} \right)dx = \dfrac{1}{2}tdt$ in the given integral, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \int {\dfrac{{\cos \sqrt {4{x^2} - 4x + 6} }}{{\sqrt {4{x^2} - 4x + 6} }}} \left( {2x - 1} \right)dx$
$\begin{array}{l} = \int {\dfrac{{\cos t}}{{{t}}} \times \dfrac{1}{2}{t}dt} \\ = \dfrac{1}{2}\int {\cos tdt} \\ = \dfrac{1}{2}\sin t + c.....(i)\end{array}$
where $c$ is constant of integration
We assumed that ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Find $t$ in terms of $x$
$\begin{array}{l}{t^2} = {\left( {2x - 1} \right)^2} + 5\\ \Rightarrow t = \sqrt {{{\left( {2x - 1} \right)}^2} + 5} \end{array}$
Substitute the expression for $t$ in $(i)$, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$, where $c$ is constant of integration
Option ‘B’ is correct
Note: The constant of integration must be used for indefinite integral. Differentiate the term ${\left( {2x - 1} \right)^2} + 5$ after expanding to avoid mistakes. The integration of cosine is sine but the integration of sine is (-cosine).
Formula Used:
$\dfrac{d}{{dx}}\left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} \pm \dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}$, where $f\left( x \right)$ and $g\left( x \right)$ are two functions of $x$
$\dfrac{d}{{dx}}\left\{ {cf\left( x \right)} \right\} = c\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$, where $c$ is a constant
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, where $n$ is a real number
and the derivative of constant is zero.
$\int {\cos tdt} = \sin t + c$, where $c$ is constant of integration
Complete step by step solution:
Expand the term ${\left( {2x - 1} \right)^2} + 5$
${\left( {2x - 1} \right)^2} + 5 = 4{x^2} - 4x + 1 + 5 = 4{x^2} - 4x + 6$
Differentiate the term ${\left( {2x - 1} \right)^2} + 5$
$\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {4{x^2} - 4x + 6} \right)$
$\begin{array}{l} = 4\dfrac{d}{{dx}}\left( {{x^2}} \right) - 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 6 \right)\\ = 4 \times 2x - 4 \times 1 + 0\\ = 8x - 4\\ = 4\left( {2x - 1} \right)\end{array}$
Let ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Differentiating both sides with respect to $x$, we get
$\begin{array}{l}\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {{t^2}} \right)\\ \Rightarrow 4\left( {2x - 1} \right) = 2t\dfrac{{dt}}{{dx}}\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{4} \times 2tdt\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{2}tdt\end{array}$
Substituting ${\left( {2x - 1} \right)^2} + 5 = {t^2}$ and $\left( {2x - 1} \right)dx = \dfrac{1}{2}tdt$ in the given integral, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \int {\dfrac{{\cos \sqrt {4{x^2} - 4x + 6} }}{{\sqrt {4{x^2} - 4x + 6} }}} \left( {2x - 1} \right)dx$
$\begin{array}{l} = \int {\dfrac{{\cos t}}{{{t}}} \times \dfrac{1}{2}{t}dt} \\ = \dfrac{1}{2}\int {\cos tdt} \\ = \dfrac{1}{2}\sin t + c.....(i)\end{array}$
where $c$ is constant of integration
We assumed that ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Find $t$ in terms of $x$
$\begin{array}{l}{t^2} = {\left( {2x - 1} \right)^2} + 5\\ \Rightarrow t = \sqrt {{{\left( {2x - 1} \right)}^2} + 5} \end{array}$
Substitute the expression for $t$ in $(i)$, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$, where $c$ is constant of integration
Option ‘B’ is correct
Note: The constant of integration must be used for indefinite integral. Differentiate the term ${\left( {2x - 1} \right)^2} + 5$ after expanding to avoid mistakes. The integration of cosine is sine but the integration of sine is (-cosine).
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
