
The integral $\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx$ is equal to (where $c$ is constant of integration)
A. $\dfrac{1}{2}\sin \sqrt {{{\left( {2x + 1} \right)}^2} + 5} + c$
B. $\dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$
C. $\dfrac{1}{2}\cos \sqrt {{{\left( {2x + 1} \right)}^2} + 5} + c$
D. $\dfrac{1}{2}\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$
Answer
217.5k+ views
Hint: The expansion of the term under root in the numerator is the same as the term under root in the denominator. Also, the differentiation of the term is present in the numerator. So, make a substitution for it and use the formula of integration to find the value of the integral.
Formula Used:
$\dfrac{d}{{dx}}\left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} \pm \dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}$, where $f\left( x \right)$ and $g\left( x \right)$ are two functions of $x$
$\dfrac{d}{{dx}}\left\{ {cf\left( x \right)} \right\} = c\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$, where $c$ is a constant
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, where $n$ is a real number
and the derivative of constant is zero.
$\int {\cos tdt} = \sin t + c$, where $c$ is constant of integration
Complete step by step solution:
Expand the term ${\left( {2x - 1} \right)^2} + 5$
${\left( {2x - 1} \right)^2} + 5 = 4{x^2} - 4x + 1 + 5 = 4{x^2} - 4x + 6$
Differentiate the term ${\left( {2x - 1} \right)^2} + 5$
$\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {4{x^2} - 4x + 6} \right)$
$\begin{array}{l} = 4\dfrac{d}{{dx}}\left( {{x^2}} \right) - 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 6 \right)\\ = 4 \times 2x - 4 \times 1 + 0\\ = 8x - 4\\ = 4\left( {2x - 1} \right)\end{array}$
Let ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Differentiating both sides with respect to $x$, we get
$\begin{array}{l}\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {{t^2}} \right)\\ \Rightarrow 4\left( {2x - 1} \right) = 2t\dfrac{{dt}}{{dx}}\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{4} \times 2tdt\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{2}tdt\end{array}$
Substituting ${\left( {2x - 1} \right)^2} + 5 = {t^2}$ and $\left( {2x - 1} \right)dx = \dfrac{1}{2}tdt$ in the given integral, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \int {\dfrac{{\cos \sqrt {4{x^2} - 4x + 6} }}{{\sqrt {4{x^2} - 4x + 6} }}} \left( {2x - 1} \right)dx$
$\begin{array}{l} = \int {\dfrac{{\cos t}}{{{t}}} \times \dfrac{1}{2}{t}dt} \\ = \dfrac{1}{2}\int {\cos tdt} \\ = \dfrac{1}{2}\sin t + c.....(i)\end{array}$
where $c$ is constant of integration
We assumed that ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Find $t$ in terms of $x$
$\begin{array}{l}{t^2} = {\left( {2x - 1} \right)^2} + 5\\ \Rightarrow t = \sqrt {{{\left( {2x - 1} \right)}^2} + 5} \end{array}$
Substitute the expression for $t$ in $(i)$, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$, where $c$ is constant of integration
Option ‘B’ is correct
Note: The constant of integration must be used for indefinite integral. Differentiate the term ${\left( {2x - 1} \right)^2} + 5$ after expanding to avoid mistakes. The integration of cosine is sine but the integration of sine is (-cosine).
Formula Used:
$\dfrac{d}{{dx}}\left\{ {f\left( x \right) \pm g\left( x \right)} \right\} = \dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} \pm \dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}$, where $f\left( x \right)$ and $g\left( x \right)$ are two functions of $x$
$\dfrac{d}{{dx}}\left\{ {cf\left( x \right)} \right\} = c\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$, where $c$ is a constant
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, where $n$ is a real number
and the derivative of constant is zero.
$\int {\cos tdt} = \sin t + c$, where $c$ is constant of integration
Complete step by step solution:
Expand the term ${\left( {2x - 1} \right)^2} + 5$
${\left( {2x - 1} \right)^2} + 5 = 4{x^2} - 4x + 1 + 5 = 4{x^2} - 4x + 6$
Differentiate the term ${\left( {2x - 1} \right)^2} + 5$
$\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {4{x^2} - 4x + 6} \right)$
$\begin{array}{l} = 4\dfrac{d}{{dx}}\left( {{x^2}} \right) - 4\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 6 \right)\\ = 4 \times 2x - 4 \times 1 + 0\\ = 8x - 4\\ = 4\left( {2x - 1} \right)\end{array}$
Let ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Differentiating both sides with respect to $x$, we get
$\begin{array}{l}\dfrac{d}{{dx}}\left\{ {{{\left( {2x - 1} \right)}^2} + 5} \right\} = \dfrac{d}{{dx}}\left( {{t^2}} \right)\\ \Rightarrow 4\left( {2x - 1} \right) = 2t\dfrac{{dt}}{{dx}}\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{4} \times 2tdt\\ \Rightarrow \left( {2x - 1} \right)dx = \dfrac{1}{2}tdt\end{array}$
Substituting ${\left( {2x - 1} \right)^2} + 5 = {t^2}$ and $\left( {2x - 1} \right)dx = \dfrac{1}{2}tdt$ in the given integral, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \int {\dfrac{{\cos \sqrt {4{x^2} - 4x + 6} }}{{\sqrt {4{x^2} - 4x + 6} }}} \left( {2x - 1} \right)dx$
$\begin{array}{l} = \int {\dfrac{{\cos t}}{{{t}}} \times \dfrac{1}{2}{t}dt} \\ = \dfrac{1}{2}\int {\cos tdt} \\ = \dfrac{1}{2}\sin t + c.....(i)\end{array}$
where $c$ is constant of integration
We assumed that ${\left( {2x - 1} \right)^2} + 5 = {t^2}$
Find $t$ in terms of $x$
$\begin{array}{l}{t^2} = {\left( {2x - 1} \right)^2} + 5\\ \Rightarrow t = \sqrt {{{\left( {2x - 1} \right)}^2} + 5} \end{array}$
Substitute the expression for $t$ in $(i)$, we get
$\int {\left[ {\dfrac{{\left( {2x - 1} \right)\cos \sqrt {{{\left( {2x - 1} \right)}^2} + 5} }}{{\sqrt {4{x^2} - 4x + 6} }}} \right]} dx = \dfrac{1}{2}\sin \sqrt {{{\left( {2x - 1} \right)}^2} + 5} + c$, where $c$ is constant of integration
Option ‘B’ is correct
Note: The constant of integration must be used for indefinite integral. Differentiate the term ${\left( {2x - 1} \right)^2} + 5$ after expanding to avoid mistakes. The integration of cosine is sine but the integration of sine is (-cosine).
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

