
The indefinite integral of $\sin \left( x \right)$ w. r .t $\cos \left( x \right)$ is
a. $\dfrac{\sin \left( 2x \right)}{4}+\dfrac{x}{2}+c$
b. $\dfrac{\sin \left( 2x \right)}{4}-\dfrac{x}{2}+c$
c. $2\sin \left( 2x \right)+c$
d. $\sin \left( x \right)+\cos \left( x \right)+c$
Answer
218.4k+ views
Hint: In this question, we have to find out the indefinite integral of $\sin \left( x \right)$ with respect to $\cos \left( x \right)$.We know that indefinite integral of f(x) with respect to x is given by $\int{f\left( x \right)dx}$ in a similar way the indefinite integral of $\sin \left( x \right)$ with respect to $\cos \left( x \right)$ is given by
$\int{\sin \left( x \right)d(\cos (x))}$
Complete step-by-step answer:
The indefinite integral of function f(x) with respect to g(x) is defined as:
$\int{f\left( x \right)dg\left( x \right)}$
So, indefinite integral of $\sin \left( x \right)$ with respect to $\cos \left( x \right)$ is
=$\int{\sin \left( x \right)d\left( \cos \left( x \right) \right)}$
To solve this above integral. We have to convert the above equation into $\int{f\left( x \right)dx}$ this form. For that firstly we have to find the differentiation of cos(x).
So,
We can re-write the above equation as:
=$\int{\sin \left( x \right)}\dfrac{d\left( \cos \left( x \right) \right)}{dx}dx$ (multiplying numerator and denominator by dx)
We know that the $\dfrac{d\left( \cos \left( x \right) \right)}{dx}=-\sin \left( x \right)$ .Putting the value of $\dfrac{d\left( \cos \left( x \right) \right)}{dx}=-\sin \left( x \right)$
We get,
$\begin{align}
& =\int{\sin \left( x \right)\times \left( -\sin \left( x \right) \right)\times dx} \\
& =\int{-{{\sin }^{2}}\left( x \right)dx} \\
\end{align}$
We know that $\left( \cos \left( 2x \right)=1-2{{\sin }^{2}}\left( x \right) \right)$ and ${{\sin }^{2}}\left( x \right)=\dfrac{1-\cos \left( 2x \right)}{2}$
Now, putting the value of ${{\sin }^{2}}\left( x \right)$ we get,
\[\begin{align}
& =-\int{\left( \dfrac{1-\cos \left( 2x \right)}{2} \right)}dx \\
& =-\dfrac{1}{2}\int{\left( 1-\cos \left( 2x \right) \right)dx} \\
& =-\dfrac{1}{2}\left( \int{1dx-\int{\cos \left( 2x \right)dx}} \right) \\
\end{align}\]
We know that $\int{\cos \left( x \right)dx}=\sin \left( x \right)$ so,
$\begin{align}
& =-\dfrac{1}{2}\left( x-\dfrac{\sin \left( 2x \right)}{2} \right)+c \\
& =\dfrac{\sin \left( 2x \right)}{4}-\dfrac{x}{2}+c \\
\end{align}$
Hence, the correct option is option (B)
Hence, the indefinite integral of sin(x) with respect to cos(x) is $\dfrac{\sin \left( 2x \right)}{4}-\dfrac{x}{2}+c$
Note: One can also solve this question by taking sin(x) as t and using relation $\left( {{\sin }^{2}}\left( x \right)+{{\cos }^{2}}\left( x \right)=1 \right)$ to find the value of cos(x), $\left( i.e,\cos \left( x \right)=\sqrt{1-{{t}^{2}}} \right)$
Then, using the above formula
The indefinite integral of sin(x) with respect to cos(x) is
$=\int{\sin \left( x \right)d\left( \cos \left( x \right) \right)}$
Now putting the value of sin(x) and cos(x), we get
$=\int{t\times d\sqrt{1-{{t}^{2}}}}$ --(1)
After solving equation (1) you will arrive at the same answer, but this method involves a lot of calculation. To avoid such problems we can use the first method to solve this type of problem.
$\int{\sin \left( x \right)d(\cos (x))}$
Complete step-by-step answer:
The indefinite integral of function f(x) with respect to g(x) is defined as:
$\int{f\left( x \right)dg\left( x \right)}$
So, indefinite integral of $\sin \left( x \right)$ with respect to $\cos \left( x \right)$ is
=$\int{\sin \left( x \right)d\left( \cos \left( x \right) \right)}$
To solve this above integral. We have to convert the above equation into $\int{f\left( x \right)dx}$ this form. For that firstly we have to find the differentiation of cos(x).
So,
We can re-write the above equation as:
=$\int{\sin \left( x \right)}\dfrac{d\left( \cos \left( x \right) \right)}{dx}dx$ (multiplying numerator and denominator by dx)
We know that the $\dfrac{d\left( \cos \left( x \right) \right)}{dx}=-\sin \left( x \right)$ .Putting the value of $\dfrac{d\left( \cos \left( x \right) \right)}{dx}=-\sin \left( x \right)$
We get,
$\begin{align}
& =\int{\sin \left( x \right)\times \left( -\sin \left( x \right) \right)\times dx} \\
& =\int{-{{\sin }^{2}}\left( x \right)dx} \\
\end{align}$
We know that $\left( \cos \left( 2x \right)=1-2{{\sin }^{2}}\left( x \right) \right)$ and ${{\sin }^{2}}\left( x \right)=\dfrac{1-\cos \left( 2x \right)}{2}$
Now, putting the value of ${{\sin }^{2}}\left( x \right)$ we get,
\[\begin{align}
& =-\int{\left( \dfrac{1-\cos \left( 2x \right)}{2} \right)}dx \\
& =-\dfrac{1}{2}\int{\left( 1-\cos \left( 2x \right) \right)dx} \\
& =-\dfrac{1}{2}\left( \int{1dx-\int{\cos \left( 2x \right)dx}} \right) \\
\end{align}\]
We know that $\int{\cos \left( x \right)dx}=\sin \left( x \right)$ so,
$\begin{align}
& =-\dfrac{1}{2}\left( x-\dfrac{\sin \left( 2x \right)}{2} \right)+c \\
& =\dfrac{\sin \left( 2x \right)}{4}-\dfrac{x}{2}+c \\
\end{align}$
Hence, the correct option is option (B)
Hence, the indefinite integral of sin(x) with respect to cos(x) is $\dfrac{\sin \left( 2x \right)}{4}-\dfrac{x}{2}+c$
Note: One can also solve this question by taking sin(x) as t and using relation $\left( {{\sin }^{2}}\left( x \right)+{{\cos }^{2}}\left( x \right)=1 \right)$ to find the value of cos(x), $\left( i.e,\cos \left( x \right)=\sqrt{1-{{t}^{2}}} \right)$
Then, using the above formula
The indefinite integral of sin(x) with respect to cos(x) is
$=\int{\sin \left( x \right)d\left( \cos \left( x \right) \right)}$
Now putting the value of sin(x) and cos(x), we get
$=\int{t\times d\sqrt{1-{{t}^{2}}}}$ --(1)
After solving equation (1) you will arrive at the same answer, but this method involves a lot of calculation. To avoid such problems we can use the first method to solve this type of problem.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

