
The half life for the first order reaction ${{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}} \to {\rm{2N}}{{\rm{O}}_{\rm{2}}}\,{\rm{ + }}\,\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{O}}_{\rm{2}}} \ is \ 24 \ hrs \ at \ {\rm{3}}{{\rm{0}}^{\rm{0}}}{\rm{C}}$. Starting with \[{\rm{10}}\] g of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\], how many grams of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\]will remain after a period of \[96\]hrs.
A. \[{\rm{1}}{\rm{.25}}\,{\rm{g}}\]
B. \[0.63\,{\rm{g}}\]
C. \[1.77\,{\rm{g}}\]
D. \[0.5\,{\rm{g}}\]
Answer
163.5k+ views
Hint: Half change time or half- life period is the time during which the concentration of the reactant falls down to half of its initial value. This may also be defined as the time required for the half completion of the reaction. The half-life formula for a first order reaction can be written as $t_{\dfrac{1}{2}}= \dfrac{0.693}{k}$, where $t_{\dfrac{1}{2}}$ half-life and k = rate constant.
Formula used Integrated rate -law for first order reaction is k = $\dfrac{2.303}{t}.log(\dfrac{a}{a-x})$, where \[{\rm{k = }}\]rate constant
\[{\rm{t = }}\]time
\[{\rm{a = }}\]initial concentration of reactant at time \[{\rm{(t = 0)}}\]
\[{\rm{a}} - {\rm{x}}\,{\rm{ = }}\]concentration of the reactant after time \[{\rm{(t = t)}}\]
Complete Step by Step Solution:
A reaction is said to be of first order if the rate of the reaction depends upon one concentration term only.
For the reaction, \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}} \to {\rm{2N}}{{\rm{O}}_{\rm{2}}}\,{\rm{ + }}\,\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{O}}_{\rm{2}}}\]
Suppose the reaction is started with ‘\[{\rm{a}}\]’ moles per litre of the reactant \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\]. After time \[{\rm{t}}\], suppose ‘\[{\rm{x}}\]’ moles per litre of it have decomposed. Therefore, the concentration of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\]after time \[{\rm{t}}\]\[{\rm{ = a - x}}\]moles per litre.
As per given data,
$t_{\dfrac{1}{2}} = 24 \ hrs$
Find the rate constant \[{\rm{(k)}}\] by using the half-life formula as:
$t_{\dfrac{1}{2}} = \dfrac{0.693}{k}$
$\Rightarrow k = \dfrac{0.693}{t_{\dfrac{1}{2}}}$
$\Rightarrow k = \dfrac{0.693}{24 \ hr}$
$\Rightarrow k = 0.0289 \ hr^{-1}$
Again,
a = 10
a - x = 10 - x
t = 96 hrs
Use integrated form of first order reaction to get the value of ‘\[{\rm{x}}\]’ as:
$k = \dfrac{2.303}{t}.log(\dfrac{a}{a-x})$
$\Rightarrow 0.0289 \ hr^{-1} = \dfrac{2.303}{96 \ hr}\times log(\dfrac{10}{10-x})$
$\Rightarrow 0.0289 \times 96 = 2.303\times log(\dfrac{10}{10-x})$
$\Rightarrow \dfrac{2.7744}{2.303} = log(\dfrac{10}{10-x})$
$\Rightarrow log(\dfrac{10}{10-x}) = 1.2$
$\Rightarrow \dfrac{10}{10-x} = antilog(1.2)$
$\Rightarrow \dfrac{10}{10-x} = 15.85$
$\Rightarrow \dfrac{10}{10-x} = 15.85 $
$\Rightarrow 10 = 158.5 - 15.85x $
$\Rightarrow x = \dfrac{148.5}{15.85} $
$\Rightarrow x = 9.37 g$
$\therefore a - x = (10 - 9.37)g = 0.63 \ g $
Therefore, option B is correct.
Note: The variation of concentration of reactants with time can be given by the integrated rate law equation. All reactions of the first order must obey the integrated rate law equation. The value of rate constant \[{\rm{(k)}}\]remains unchanged even if the concentration units are changed. The half -life for a first order reaction is found to be constant and independent of the initial concentration of the reactant.
Formula used Integrated rate -law for first order reaction is k = $\dfrac{2.303}{t}.log(\dfrac{a}{a-x})$, where \[{\rm{k = }}\]rate constant
\[{\rm{t = }}\]time
\[{\rm{a = }}\]initial concentration of reactant at time \[{\rm{(t = 0)}}\]
\[{\rm{a}} - {\rm{x}}\,{\rm{ = }}\]concentration of the reactant after time \[{\rm{(t = t)}}\]
Complete Step by Step Solution:
A reaction is said to be of first order if the rate of the reaction depends upon one concentration term only.
For the reaction, \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}} \to {\rm{2N}}{{\rm{O}}_{\rm{2}}}\,{\rm{ + }}\,\dfrac{{\rm{1}}}{{\rm{2}}}{{\rm{O}}_{\rm{2}}}\]
Suppose the reaction is started with ‘\[{\rm{a}}\]’ moles per litre of the reactant \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\]. After time \[{\rm{t}}\], suppose ‘\[{\rm{x}}\]’ moles per litre of it have decomposed. Therefore, the concentration of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\]after time \[{\rm{t}}\]\[{\rm{ = a - x}}\]moles per litre.
As per given data,
$t_{\dfrac{1}{2}} = 24 \ hrs$
Find the rate constant \[{\rm{(k)}}\] by using the half-life formula as:
$t_{\dfrac{1}{2}} = \dfrac{0.693}{k}$
$\Rightarrow k = \dfrac{0.693}{t_{\dfrac{1}{2}}}$
$\Rightarrow k = \dfrac{0.693}{24 \ hr}$
$\Rightarrow k = 0.0289 \ hr^{-1}$
Again,
a = 10
a - x = 10 - x
t = 96 hrs
Use integrated form of first order reaction to get the value of ‘\[{\rm{x}}\]’ as:
$k = \dfrac{2.303}{t}.log(\dfrac{a}{a-x})$
$\Rightarrow 0.0289 \ hr^{-1} = \dfrac{2.303}{96 \ hr}\times log(\dfrac{10}{10-x})$
$\Rightarrow 0.0289 \times 96 = 2.303\times log(\dfrac{10}{10-x})$
$\Rightarrow \dfrac{2.7744}{2.303} = log(\dfrac{10}{10-x})$
$\Rightarrow log(\dfrac{10}{10-x}) = 1.2$
$\Rightarrow \dfrac{10}{10-x} = antilog(1.2)$
$\Rightarrow \dfrac{10}{10-x} = 15.85$
$\Rightarrow \dfrac{10}{10-x} = 15.85 $
$\Rightarrow 10 = 158.5 - 15.85x $
$\Rightarrow x = \dfrac{148.5}{15.85} $
$\Rightarrow x = 9.37 g$
$\therefore a - x = (10 - 9.37)g = 0.63 \ g $
Therefore, option B is correct.
Note: The variation of concentration of reactants with time can be given by the integrated rate law equation. All reactions of the first order must obey the integrated rate law equation. The value of rate constant \[{\rm{(k)}}\]remains unchanged even if the concentration units are changed. The half -life for a first order reaction is found to be constant and independent of the initial concentration of the reactant.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes
