
The graph $F - x$ is given, find the compression produced in the spring when a body of mass $5kg$ moving with velocity $8m/s$ hits the spring. Also calculate the force constant of the spring.

Answer
214.2k+ views
Hint: To find the force constant of the spring see the graph and find the slope. Then, calculate it by putting values. Now, to calculate the compression we have to use the conservation of energy in which total energy in an isolated system remains constant. So, kinetic and potential energy become equal to each other.
Complete step by step answer:
From the graph in the question, we can conclude that the slope of the graph is the force constant of the spring.
$
\because F = kx \\
\therefore k = \dfrac{x}{F} \\
$
where, $F$ is the force
$k$ is the force constant
$x$ is the compression of the spring
The slope of a graph can be calculated when we determine the difference between coordinates of the y – axis and x – axis respectively. After this, the differences of y – coordinates and x – coordinates are divided.
If we take $\left( {0.3m,24N} \right)$ and $\left( {0.2m,16N} \right)$ coordinates from x – axis and y – axis respectively, we get –
$
\implies Slope = \dfrac{{24 - 16}}{{0.3 - 0.2}} \\
\Rightarrow Slope = \dfrac{8}{{0.1}} \\
Slope = 80N/m \\
$
We know that, $slope = k$
Therefore, the force constant of the spring is $80N/m$.
From the question, we can conclude that the block will continue to compress till the block comes to the rest.
Now, using the conservation of energy the potential energy of the spring and kinetic energy of the spring becomes equal to each other because according to conservation of energy in an isolated system, the total energy remains constant and is said to be conserved over time.
$\therefore U = K \cdots \left( 1 \right)$
where, $U$ is the potential energy and $K$ is the kinetic energy
We know that, for a spring
$
\implies U = \dfrac{1}{2}k{x^2} \\
\implies K = \dfrac{1}{2}m{v^2} \\
$
From equation $\left( 1 \right)$, we get –
$\dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v^2}$
Cancelling $\dfrac{1}{2}$ on both sides, we get –
$
k{x^2} = m{v^2} \\
\implies x = v\sqrt {\dfrac{m}{k}} \cdots \left( 2 \right) \\
$
According to the question, it is given that –
Velocity, $v = 8m/s$
Mass, $m = 5kg$
Putting these values in equation $\left( 2 \right)$, we get –
$
\implies x = 8\sqrt {\dfrac{5}{{80}}} \\
\implies x = 8\sqrt {\dfrac{1}{{16}}} \\
\implies x = \dfrac{8}{4} = 2m \\
$
Hence, compression produced by the spring after the hitting of the body is $2m$.
Note: A spring stores potential energy due to extension. Since an unextended spring does not store potential energy, it is used as the point of zero energy. For a spring, potential energy is defined as, $U = \dfrac{1}{2}k{x^2}$ where, $x$ is the compression of the spring.
Complete step by step answer:
From the graph in the question, we can conclude that the slope of the graph is the force constant of the spring.
$
\because F = kx \\
\therefore k = \dfrac{x}{F} \\
$
where, $F$ is the force
$k$ is the force constant
$x$ is the compression of the spring
The slope of a graph can be calculated when we determine the difference between coordinates of the y – axis and x – axis respectively. After this, the differences of y – coordinates and x – coordinates are divided.
If we take $\left( {0.3m,24N} \right)$ and $\left( {0.2m,16N} \right)$ coordinates from x – axis and y – axis respectively, we get –
$
\implies Slope = \dfrac{{24 - 16}}{{0.3 - 0.2}} \\
\Rightarrow Slope = \dfrac{8}{{0.1}} \\
Slope = 80N/m \\
$
We know that, $slope = k$
Therefore, the force constant of the spring is $80N/m$.
From the question, we can conclude that the block will continue to compress till the block comes to the rest.
Now, using the conservation of energy the potential energy of the spring and kinetic energy of the spring becomes equal to each other because according to conservation of energy in an isolated system, the total energy remains constant and is said to be conserved over time.
$\therefore U = K \cdots \left( 1 \right)$
where, $U$ is the potential energy and $K$ is the kinetic energy
We know that, for a spring
$
\implies U = \dfrac{1}{2}k{x^2} \\
\implies K = \dfrac{1}{2}m{v^2} \\
$
From equation $\left( 1 \right)$, we get –
$\dfrac{1}{2}k{x^2} = \dfrac{1}{2}m{v^2}$
Cancelling $\dfrac{1}{2}$ on both sides, we get –
$
k{x^2} = m{v^2} \\
\implies x = v\sqrt {\dfrac{m}{k}} \cdots \left( 2 \right) \\
$
According to the question, it is given that –
Velocity, $v = 8m/s$
Mass, $m = 5kg$
Putting these values in equation $\left( 2 \right)$, we get –
$
\implies x = 8\sqrt {\dfrac{5}{{80}}} \\
\implies x = 8\sqrt {\dfrac{1}{{16}}} \\
\implies x = \dfrac{8}{4} = 2m \\
$
Hence, compression produced by the spring after the hitting of the body is $2m$.
Note: A spring stores potential energy due to extension. Since an unextended spring does not store potential energy, it is used as the point of zero energy. For a spring, potential energy is defined as, $U = \dfrac{1}{2}k{x^2}$ where, $x$ is the compression of the spring.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Average and RMS Value in Physics: Formula, Comparison & Application

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Electromagnetic Waves – Meaning, Types, Properties & Applications

Charging and Discharging of Capacitor Explained

What is the period of small oscillations of the block class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2026 Helpline Numbers for Aspiring Candidates

Free Radical Substitution and Its Stepwise Mechanism

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

