
The general solution of the differential equation \[\left( 1+{{y}^{2}} \right)dx+\left( 1+{{x}^{2}} \right)dy=0\] is
a) \[x-y=C\left( 1-xy \right)\]
b) \[x-y=C\left( 1+xy \right)\]
c) \[x+y=C\left( 1-xy \right)\]
d) \[x+y=C\left( 1+xy \right)\]
Answer
162.9k+ views
Hint: Here we need to find the general solution of the given differential equation by interchanging the terms. We know that the integration formula, i.e., \[\int{{{\tan }^{-1}}\left( x \right)}.dx=\dfrac{1}{1+{{x}^{2}}}+c\], where c is the integration constant. Using this we can solve the given problem.
Step by step solution:
Given
\[\left( 1+{{y}^{2}} \right)dx+\left( 1+{{x}^{2}} \right)dy=0\]
Dividing the whole equation by \[\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)\], We have
\[\Rightarrow \dfrac{\left( 1+{{y}^{2}} \right)dx+\left( 1+{{x}^{2}} \right)dy}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}=\dfrac{0}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}\]
\[\Rightarrow \dfrac{\left( 1+{{y}^{2}} \right)dx}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}+\dfrac{\left( 1+{{x}^{2}} \right)dy}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}=0\]
\[\Rightarrow \dfrac{dx}{\left( 1+{{x}^{2}} \right)}+\dfrac{dy}{\left( 1+{{y}^{2}} \right)}=0\]
Integrating on both sides we have
\[\Rightarrow {{\tan }^{-1}}x+{{\tan }^{-1}}y=c\], Where c is the integration constant.
We know that \[{{\tan }^{-1}}(x)+{{\tan }^{-1}}(y)={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\], applying this we have
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)=c\]
Or
\[\Rightarrow \left( \dfrac{x-y}{1+xy} \right)=\tan c\]
Again, we know that \[\tan c\] is a constant, hence we take \[\tan c=C\]. Then we have,
\[\Rightarrow \left( \dfrac{x-y}{1+xy} \right)=C\]
\[\Rightarrow \left( x-y \right)=C\left( 1+xy \right)\]
Hence, option (c) is correct.
Note: We know that we will have an integration constant in indefinite integration, whereas in definite integral we will not have an integration constant because of the lower and upper limit of the integral. We also know that the integration of zero or any constant is not equal to zero. But differentiation of a constant is zero.
Step by step solution:
Given
\[\left( 1+{{y}^{2}} \right)dx+\left( 1+{{x}^{2}} \right)dy=0\]
Dividing the whole equation by \[\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)\], We have
\[\Rightarrow \dfrac{\left( 1+{{y}^{2}} \right)dx+\left( 1+{{x}^{2}} \right)dy}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}=\dfrac{0}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}\]
\[\Rightarrow \dfrac{\left( 1+{{y}^{2}} \right)dx}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}+\dfrac{\left( 1+{{x}^{2}} \right)dy}{\left( 1+{{y}^{2}} \right)\left( 1+{{x}^{2}} \right)}=0\]
\[\Rightarrow \dfrac{dx}{\left( 1+{{x}^{2}} \right)}+\dfrac{dy}{\left( 1+{{y}^{2}} \right)}=0\]
Integrating on both sides we have
\[\Rightarrow {{\tan }^{-1}}x+{{\tan }^{-1}}y=c\], Where c is the integration constant.
We know that \[{{\tan }^{-1}}(x)+{{\tan }^{-1}}(y)={{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)\], applying this we have
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{x-y}{1+xy} \right)=c\]
Or
\[\Rightarrow \left( \dfrac{x-y}{1+xy} \right)=\tan c\]
Again, we know that \[\tan c\] is a constant, hence we take \[\tan c=C\]. Then we have,
\[\Rightarrow \left( \dfrac{x-y}{1+xy} \right)=C\]
\[\Rightarrow \left( x-y \right)=C\left( 1+xy \right)\]
Hence, option (c) is correct.
Note: We know that we will have an integration constant in indefinite integration, whereas in definite integral we will not have an integration constant because of the lower and upper limit of the integral. We also know that the integration of zero or any constant is not equal to zero. But differentiation of a constant is zero.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
