
The Gaussian surface for calculating the electric field due to a charge distribution is?
A) Any surface near the charge distribution
B) Always a spherical surface
C) A symmetrical closed surface containing the charge distribution, at every point of which electric field has a single fixed value
D) None of the given options
Answer
208.2k+ views
Hint: We can easily answer the given question if we have a clear understanding of Gauss’s law and the Gaussian surface. Also, we need to know the relation between the charge distribution and a surface. Then only we can conclude with the correct answer of the given question.
Complete step by step answer:
First of all let us find out about Gauss's Law.
Gauss’s Law is also known as the Gauss’s flux theorem. According to Gauss’s law the distribution of electric charge to the resulting electric field is related to each other. So, we can say that the flux of the electric field of any arbitrary closed surface is proportional to the electric charge enclosed by the surface irrespective of the charge distribution.
Now let us know about a Gaussian surface.
So, a Gaussian surface is an enclosed surface in three dimensional space through which the flux of a vector field is calculated. These vector fields are gravitational field, magnetic field and electric field.
Now, we can conclude from step one and two that the Gaussian surface for calculating the electric field due to a charge distribution is a symmetrical closed surface containing the charge distribution, at every point of which the electric field has a single fixed value.
Hence, option (C) is the correct choice of the given question.
Note: Mathematically, we can represent Gauss’s law as $\phi = \dfrac{Q}{{{\varepsilon _0}}}$ where, $Q$ is the total charge distribution over the surface and ${\varepsilon _0}$is the permittivity or electric constant. With the help of Gauss’s law we can easily calculate the electric field.
Complete step by step answer:
First of all let us find out about Gauss's Law.
Gauss’s Law is also known as the Gauss’s flux theorem. According to Gauss’s law the distribution of electric charge to the resulting electric field is related to each other. So, we can say that the flux of the electric field of any arbitrary closed surface is proportional to the electric charge enclosed by the surface irrespective of the charge distribution.
Now let us know about a Gaussian surface.
So, a Gaussian surface is an enclosed surface in three dimensional space through which the flux of a vector field is calculated. These vector fields are gravitational field, magnetic field and electric field.
Now, we can conclude from step one and two that the Gaussian surface for calculating the electric field due to a charge distribution is a symmetrical closed surface containing the charge distribution, at every point of which the electric field has a single fixed value.
Hence, option (C) is the correct choice of the given question.
Note: Mathematically, we can represent Gauss’s law as $\phi = \dfrac{Q}{{{\varepsilon _0}}}$ where, $Q$ is the total charge distribution over the surface and ${\varepsilon _0}$is the permittivity or electric constant. With the help of Gauss’s law we can easily calculate the electric field.
Recently Updated Pages
Young's Double Slit Experiment Derivation: Stepwise Guide & Formula

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Main 2023 (April 10th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 28th Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

