
The equations of the lines through the origin making an angle of \[{60^\circ }\] with the line \[x + y\sqrt 3 + 3\sqrt 3 = 0\] are
A. \[y = 0,x - y\sqrt 3 = 0\]
В. \[x = 0,x - y\sqrt 3 = 0\]
C. \[x = 0,x + y\sqrt 3 = 0\]
D. \[y = 0,x + y\sqrt 3 = 0\]
Answer
163.8k+ views
Hint: In general, the equation y = mx indicates a straight line with gradient m that passes through the origin. \[y = mx\] is the equation for a straight line with gradient m going through the origin.
Formula Used:
A line's slope intercept is given as \[y = mx\] Where, the variable \[m\] in the formula is the slope.
Complete step by step Solution:
The line through the origin is said by the equation as below
\[y = mx\] --- (1)
We have been given in the question that the equation of the line is
\[x + y\sqrt 3 + 3\sqrt 3 = 0\] ---- (2)
The above line has the slope as
\[ - \dfrac{1}{{\sqrt 3 }}\]
We have been given in the question that the angle between (1) and (2) is \[{60^\circ }\]
Then we have
\[\left| {\dfrac{{m + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{m}{{\sqrt 3 }}}}} \right| = \tan {60^\circ }\]
Now, we have to determine the value of \[\tan {60^\circ }\]in the above equation and also solve the numerator and denominator, we get
\[\left| {\dfrac{{\sqrt 3 \;{\rm{m}} + 1}}{{\sqrt 3 - {\rm{m}}}}} \right| = \sqrt 3 \]
On removing the modulus from the above equation, we get
\[\dfrac{{\sqrt 3 \;{\rm{m}} + 1}}{{\sqrt 3 - {\rm{m}}}} = \pm \sqrt 3 \]
Now, let’s move the term \[\sqrt 3 - 1\] from denominator of the left hand side to the right hand side of the equation, we get
\[\sqrt 3 \;{\rm{m}} - 1 = \pm \sqrt 3 (\sqrt 3 - {\rm{m}})\]
On multiplying the term \[ \pm \sqrt 3 \]with the terms inside the parentheses, we get
\[\sqrt 3 \;{\rm{m}} - 1 = 3 - \sqrt 3 \;{\rm{m}}\]
Now, we have to solve for \[m\], we get
\[{\rm{m}} = \dfrac{1}{{\sqrt 3 }}\]
Therefore, the equations of the lines through the origin making an angle of \[{60^\circ }\] with the line \[x + y\sqrt 3 + 3\sqrt 3 = 0\] are \[y = \dfrac{x}{{\sqrt 3 }}\] or \[x - y\sqrt 3 \]
Therefore, the correct option is (B).
Note:Any straight line, such as \[ax + by + c = 0\] that goes through the origin will satisfies the point (0,0) when (0,0) is introduced into the line.
That is,\[a\left( 0 \right) + b\left( 0 \right) + c = 0\]
\[ \Rightarrow C = 0\]
As a result, the value of C will be zero.
Formula Used:
A line's slope intercept is given as \[y = mx\] Where, the variable \[m\] in the formula is the slope.
Complete step by step Solution:
The line through the origin is said by the equation as below
\[y = mx\] --- (1)
We have been given in the question that the equation of the line is
\[x + y\sqrt 3 + 3\sqrt 3 = 0\] ---- (2)
The above line has the slope as
\[ - \dfrac{1}{{\sqrt 3 }}\]
We have been given in the question that the angle between (1) and (2) is \[{60^\circ }\]
Then we have
\[\left| {\dfrac{{m + \dfrac{1}{{\sqrt 3 }}}}{{1 - \dfrac{m}{{\sqrt 3 }}}}} \right| = \tan {60^\circ }\]
Now, we have to determine the value of \[\tan {60^\circ }\]in the above equation and also solve the numerator and denominator, we get
\[\left| {\dfrac{{\sqrt 3 \;{\rm{m}} + 1}}{{\sqrt 3 - {\rm{m}}}}} \right| = \sqrt 3 \]
On removing the modulus from the above equation, we get
\[\dfrac{{\sqrt 3 \;{\rm{m}} + 1}}{{\sqrt 3 - {\rm{m}}}} = \pm \sqrt 3 \]
Now, let’s move the term \[\sqrt 3 - 1\] from denominator of the left hand side to the right hand side of the equation, we get
\[\sqrt 3 \;{\rm{m}} - 1 = \pm \sqrt 3 (\sqrt 3 - {\rm{m}})\]
On multiplying the term \[ \pm \sqrt 3 \]with the terms inside the parentheses, we get
\[\sqrt 3 \;{\rm{m}} - 1 = 3 - \sqrt 3 \;{\rm{m}}\]
Now, we have to solve for \[m\], we get
\[{\rm{m}} = \dfrac{1}{{\sqrt 3 }}\]
Therefore, the equations of the lines through the origin making an angle of \[{60^\circ }\] with the line \[x + y\sqrt 3 + 3\sqrt 3 = 0\] are \[y = \dfrac{x}{{\sqrt 3 }}\] or \[x - y\sqrt 3 \]
Therefore, the correct option is (B).
Note:Any straight line, such as \[ax + by + c = 0\] that goes through the origin will satisfies the point (0,0) when (0,0) is introduced into the line.
That is,\[a\left( 0 \right) + b\left( 0 \right) + c = 0\]
\[ \Rightarrow C = 0\]
As a result, the value of C will be zero.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
