
The equations $(b-c)x+(c-a)y+(a-b)=0$ and \[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\] will represent the same line, if
A. $b=c$
B. $c=a$
C. $a=b$
D. $a+b+c=0$
E. All the above
Answer
163.2k+ views
Hint: In this question, we are to find the conditions that lead the given equations to be the same line. By the appropriate formula, the required conditions are evaluated. Two equations that represent the same line have equal ratios of their coefficients.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
