
The equations $(b-c)x+(c-a)y+(a-b)=0$ and \[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\] will represent the same line, if
A. $b=c$
B. $c=a$
C. $a=b$
D. $a+b+c=0$
E. All the above
Answer
232.8k+ views
Hint: In this question, we are to find the conditions that lead the given equations to be the same line. By the appropriate formula, the required conditions are evaluated. Two equations that represent the same line have equal ratios of their coefficients.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

