
The equations $(b-c)x+(c-a)y+(a-b)=0$ and \[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\] will represent the same line, if
A. $b=c$
B. $c=a$
C. $a=b$
D. $a+b+c=0$
E. All the above
Answer
161.7k+ views
Hint: In this question, we are to find the conditions that lead the given equations to be the same line. By the appropriate formula, the required conditions are evaluated. Two equations that represent the same line have equal ratios of their coefficients.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Formula used: The condition for the lines ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ to represent the same line is
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
I.e., the ratios of their respective coefficients are equal to one another.
Complete step by step solution: The given equations of the lines are
$(b-c)x+(c-a)y+(a-b)=0\text{ }...(1)$
\[({{b}^{3}}-{{c}^{3}})x+({{c}^{3}}-{{a}^{3}})y+({{a}^{3}}-{{b}^{3}})=0\text{ }...(2)\]
For the lines (1) and (2), to represent the same line we have the following condition
\[\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}\]
Here for the given lines, the coefficients are
$\begin{align}
& {{a}_{1}}=(b-c) \\
& {{a}_{2}}=({{b}^{3}}-{{c}^{3}}) \\
& {{b}_{1}}=(c-a) \\
& {{b}_{2}}=({{c}^{3}}-{{a}^{3}}) \\
& {{c}_{1}}=(a-b) \\
& {{c}_{2}}=({{a}^{3}}-{{b}^{3}}) \\
\end{align}$
Then, on substituting these coefficients in the above condition, we get
\[\begin{align}
& \dfrac{(b-c)}{({{b}^{3}}-{{c}^{3}})}=\dfrac{(c-a)}{({{c}^{3}}-{{a}^{3}})}=\dfrac{(a-b)}{({{a}^{3}}-{{b}^{3}})} \\
& \dfrac{(b-c)}{(b-c)({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{(c-a)}{(c-a)({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{(a-b)}{(a-b)({{a}^{2}}+{{b}^{2}}+ab)} \\
& \dfrac{1}{({{b}^{2}}+{{c}^{2}}+bc)}=\dfrac{1}{({{c}^{2}}+{{a}^{2}}+ca)}=\dfrac{1}{({{a}^{2}}+{{b}^{2}}+ab)} \\
\end{align}\]
From this, we can write
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca\text{ }...(3) \\
& \Rightarrow {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab\text{ }...(4) \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc\text{ }...(5) \\
\end{align}$
Then, on simplifying these equations, we get
$\begin{align}
& {{b}^{2}}+{{c}^{2}}+bc={{c}^{2}}+{{a}^{2}}+ca \\
& \Rightarrow {{a}^{2}}-{{b}^{2}}+ac-bc=0 \\
& \Rightarrow (a+b)(a-b)+c(a-b)=0 \\
& \Rightarrow (a-b)(a+b+c)=0 \\
\end{align}$
Then,
\[\begin{align}
& (a-b)=0;(a+b+c)=0 \\
& \therefore a=b;a+b+c=0\text{ }...(6) \\
\end{align}\]
$\begin{align}
& {{c}^{2}}+{{a}^{2}}+ca={{a}^{2}}+{{b}^{2}}+ab \\
& \Rightarrow {{b}^{2}}-{{c}^{2}}+ab-ca=0 \\
& \Rightarrow (b+c)(b-c)+a(b-c)=0 \\
& \Rightarrow (b-c)(b+c+a)=0 \\
\end{align}$
Then,
$\begin{align}
& (b-c)=0;(b+c+a)=0 \\
& \therefore b=c;a+b+c=0\text{ }...(7) \\
\end{align}$
$\begin{align}
& {{a}^{2}}+{{b}^{2}}+ab={{b}^{2}}+{{c}^{2}}+bc \\
& \Rightarrow {{c}^{2}}-{{a}^{2}}+bc-ab=0 \\
& \Rightarrow (c+a)(c-a)+b(c-a)=0 \\
& \Rightarrow (c-a)(c+a+b)=0 \\
\end{align}$
Then,
$\begin{align}
& (c-a)=0;(c+a+b)=0 \\
& \therefore c=a;a+b+c=0\text{ }...(8) \\
\end{align}$
From (6), (7), and (8), we get
$a=b;b=c;c=a;a+b+c=0$
Thus, Option (E) is correct.
Note: Here we need to remember that, the ratio of coefficients of two lines is equal if they represent the same line. By this, we can get the required values that make them represent the same line.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
