
The equation of the circle passing through the point (2,1) and touching y – axis at the origin is
A . ${{x}^{2}}+{{y}^{2}}-5x=0$
B. $2{{x}^{2}}+2{{y}^{2}}-5x=0$
C. ${{x}^{2}}+{{y}^{2}}+5x=0$
D. ${{x}^{2}}-{{y}^{2}}-5x=0$
Answer
217.5k+ views
Hint: In this question, we have to find the equation of the circle passing through the point (2,1) touching on the y- axis touching the origin. As the circle touches the y- axis at the origin, this means the centre will be at x- axis . Then, we find the equation of the circle using the standard form of circle and we get the two values of h. Now we find out the two equations with the different values of h and choose out the correct option.
Formula Used:
Equation of circle: ${{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}$
Complete Step- by- Step Solution:
Let the equation of the required circle be
${{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}$
We are given that the circle touching the y- axis at the origin
This means k = 0 and r = r units
Hence the equation of the circle is
${{(x-h)}^{2}}+{{(y-0)}^{2}}={{r}^{2}}$
Thus Equation be ${{(x-h)}^{2}}+{{y}^{2}}={{r}^{2}}$------------------- (1)
It is also given that the circle passes through (2,1)
Equation be ${{(2-h)}^{2}}+{{(1)}^{2}}={{r}^{2}}$
That is ${{(2-h)}^{2}}+1={{r}^{2}}$----------------- (2)
It is also passing through origin i.e. (0,0)
Equation be ${{(0-h)}^{2}}+{{0}^{2}}={{r}^{2}}$
This means ${{h}^{2}}={{r}^{2}}$ --------------------- (3)
Now equation (2) becomes
${{(2-h)}^{2}}+1={{h}^{2}}$
That is $4-4h+{{h}^{2}}+1={{h}^{2}}$
$-4h+5 = 0$
That is h = $\dfrac{5}{4}$
Now, from equation (1) and (3), we get equation of circle is
${{(x-h)}^{2}}+{{y}^{2}}={{h}^{2}}$
${{x}^{2}}-2xh+{{y}^{2}}=0$
Now we put the value of h, we get
${{x}^{2}}-2x\left( \dfrac{5}{4} \right)+{{y}^{2}}=0$
$4{{x}^{2}}-10x+4{{y}^{2}}=0$
By taking 2 common from the above equation, we get
That is $2{{x}^{2}}-5x+2{{y}^{2}}=0$
That is $2{{x}^{2}}-5x+2{{y}^{2}}=0$ is the required equation of the circle.
Thus, Option (B ) is correct.
Note: We know standard form of circle is ${{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}$
where the centre is (h,k) and radius is r.
If the circle touches the y-axis at origin, then the centre will be at x- axis.
So the centre = (h,0) and radius = h
Formula Used:
Equation of circle: ${{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}$
Complete Step- by- Step Solution:
Let the equation of the required circle be
${{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}$
We are given that the circle touching the y- axis at the origin
This means k = 0 and r = r units
Hence the equation of the circle is
${{(x-h)}^{2}}+{{(y-0)}^{2}}={{r}^{2}}$
Thus Equation be ${{(x-h)}^{2}}+{{y}^{2}}={{r}^{2}}$------------------- (1)
It is also given that the circle passes through (2,1)
Equation be ${{(2-h)}^{2}}+{{(1)}^{2}}={{r}^{2}}$
That is ${{(2-h)}^{2}}+1={{r}^{2}}$----------------- (2)
It is also passing through origin i.e. (0,0)
Equation be ${{(0-h)}^{2}}+{{0}^{2}}={{r}^{2}}$
This means ${{h}^{2}}={{r}^{2}}$ --------------------- (3)
Now equation (2) becomes
${{(2-h)}^{2}}+1={{h}^{2}}$
That is $4-4h+{{h}^{2}}+1={{h}^{2}}$
$-4h+5 = 0$
That is h = $\dfrac{5}{4}$
Now, from equation (1) and (3), we get equation of circle is
${{(x-h)}^{2}}+{{y}^{2}}={{h}^{2}}$
${{x}^{2}}-2xh+{{y}^{2}}=0$
Now we put the value of h, we get
${{x}^{2}}-2x\left( \dfrac{5}{4} \right)+{{y}^{2}}=0$
$4{{x}^{2}}-10x+4{{y}^{2}}=0$
By taking 2 common from the above equation, we get
That is $2{{x}^{2}}-5x+2{{y}^{2}}=0$
That is $2{{x}^{2}}-5x+2{{y}^{2}}=0$ is the required equation of the circle.
Thus, Option (B ) is correct.
Note: We know standard form of circle is ${{(x-h)}^{2}}+{{(y-k)}^{2}}={{r}^{2}}$
where the centre is (h,k) and radius is r.
If the circle touches the y-axis at origin, then the centre will be at x- axis.
So the centre = (h,0) and radius = h
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

