
The eccentricity of an ellipse \[9{x^2} + 16{y^2} = 144\] is
(a) \[\dfrac{{\sqrt 3 }}{5}\]
(b) \[\dfrac{{\sqrt 5 }}{3}\]
(c) \[\dfrac{{\sqrt 7 }}{4}\]
(d) \[\dfrac{2}{5}\]
Answer
214.2k+ views
Hint: Here the eccentricity of an ellipse is a measure of how nearly circular is the ellipse. Eccentricity is found by the formula eccentricity = c/a where ‘c’ is the distance from the centre to the focus of the ellipse and ‘a’ is the distance from the centre to the vertex for the standard form of the ellipse.
Given ellipse is \[9{x^2} + 16{y^2} = 144\]
Rewriting the ellipse, we get
\[
\dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = 1 \\
\\
\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \\
\]
For the ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] the eccentricity is given by \[e = \dfrac{c}{a}\], where \[c = \sqrt {{a^2} - {b^2}} \].
Comparing both the equations we have \[a = 4,{\text{ }}b = 3{\text{ }}\]
So, \[c = \sqrt {16 - 9} = \sqrt 7 \]
Therefore, \[e = \dfrac{c}{a} = \dfrac{{\sqrt 7 }}{4}\]
Thus, the answer is option (c) \[\dfrac{{\sqrt 7 }}{4}\].
Note: The eccentricity of the ellipse is always greater than zero but less than one i.e. \[0 < e < 1\]. The standard form of the ellipse is \[\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1\] with centre \[\left( {h,k} \right)\]. In this problem we have centre \[\left( {0,0} \right)\] so we have used the ellipse form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\].
Given ellipse is \[9{x^2} + 16{y^2} = 144\]
Rewriting the ellipse, we get
\[
\dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = 1 \\
\\
\dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \\
\]
For the ellipse of the form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] the eccentricity is given by \[e = \dfrac{c}{a}\], where \[c = \sqrt {{a^2} - {b^2}} \].
Comparing both the equations we have \[a = 4,{\text{ }}b = 3{\text{ }}\]
So, \[c = \sqrt {16 - 9} = \sqrt 7 \]
Therefore, \[e = \dfrac{c}{a} = \dfrac{{\sqrt 7 }}{4}\]
Thus, the answer is option (c) \[\dfrac{{\sqrt 7 }}{4}\].
Note: The eccentricity of the ellipse is always greater than zero but less than one i.e. \[0 < e < 1\]. The standard form of the ellipse is \[\dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1\] with centre \[\left( {h,k} \right)\]. In this problem we have centre \[\left( {0,0} \right)\] so we have used the ellipse form \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\].
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

