
The displacement time graphs of two particles A and B are straight lines making angles of 30° and 60° respectively with the time axis. If the velocity of A is \[{v_A}\] and that of B is \[{v_B}\] , then the value of \[\dfrac{{{v_A}}}{{{v_B}}}\] is
A. \[\dfrac{1}{2}\]
B. \[\dfrac{1}{{\sqrt 3 }}\]
C. \[\sqrt 3 \]
D. \[\dfrac{1}{3}\]
Answer
163.2k+ views
Hint:The slope of the displacement-time graph of a body is the rate change of displacement with respect to time. As we know that the rate of change of displacement is equal to the velocity of the body. Hence, the velocity of the body is the slope of the displacement-time graph.
Formula used:
\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Here, m is the slope of the line joining two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\].
\[m = \tan \theta \]
Here m is the slope of the line making an angle of \[\theta \] with the horizontal.
Complete step by step solution:
For body A, the slope of the displacement-time graph is constant and the line is making an angle of 30° with the axis which represents time. So, the velocity of the body A will be the tangent of angle 30° It is given that the velocity of the body A is \[{v_A}\], then
\[{v_A} = \tan 30^\circ \]
\[\Rightarrow {v_A} = \dfrac{1}{{\sqrt 3 }}m{s^{ - 1}}\]
For body B, the slope of the displacement-time graph is constant and the line is making an angle of 60° with the axis which represents time. So, the velocity of the body B will be the tangent of angle 60°. It is given that the velocity of the body B is \[{v_B}\], then
\[{v_B} = \tan 60^\circ \]
\[\Rightarrow {v_B} = \sqrt 3 m{s^{ - 1}}\]
We need to find the ratio of the velocity of the body A to the velocity of the body B,
\[\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)m{s^{ - 1}}}}{{\sqrt 3 m{s^{ - 1}}}}\]
\[\Rightarrow \dfrac{{{v_A}}}{{{v_B}}} = \dfrac{1}{{\sqrt 3 \times \sqrt 3 }}\]
\[\therefore \dfrac{{{v_A}}}{{{v_B}}} = \dfrac{1}{3}\]
Therefore, the correct option is D.
Note: A ratio is a pure number, meaning it has no dimensions. The vector quantity known as velocity has both magnitude and direction. We use the acute angle formed by the horizontal axis and the displacement-time graph to determine the magnitude.
Formula used:
\[m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\]
Here, m is the slope of the line joining two points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\].
\[m = \tan \theta \]
Here m is the slope of the line making an angle of \[\theta \] with the horizontal.
Complete step by step solution:
For body A, the slope of the displacement-time graph is constant and the line is making an angle of 30° with the axis which represents time. So, the velocity of the body A will be the tangent of angle 30° It is given that the velocity of the body A is \[{v_A}\], then
\[{v_A} = \tan 30^\circ \]
\[\Rightarrow {v_A} = \dfrac{1}{{\sqrt 3 }}m{s^{ - 1}}\]
For body B, the slope of the displacement-time graph is constant and the line is making an angle of 60° with the axis which represents time. So, the velocity of the body B will be the tangent of angle 60°. It is given that the velocity of the body B is \[{v_B}\], then
\[{v_B} = \tan 60^\circ \]
\[\Rightarrow {v_B} = \sqrt 3 m{s^{ - 1}}\]
We need to find the ratio of the velocity of the body A to the velocity of the body B,
\[\dfrac{{{v_A}}}{{{v_B}}} = \dfrac{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)m{s^{ - 1}}}}{{\sqrt 3 m{s^{ - 1}}}}\]
\[\Rightarrow \dfrac{{{v_A}}}{{{v_B}}} = \dfrac{1}{{\sqrt 3 \times \sqrt 3 }}\]
\[\therefore \dfrac{{{v_A}}}{{{v_B}}} = \dfrac{1}{3}\]
Therefore, the correct option is D.
Note: A ratio is a pure number, meaning it has no dimensions. The vector quantity known as velocity has both magnitude and direction. We use the acute angle formed by the horizontal axis and the displacement-time graph to determine the magnitude.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
