The displacement of the medium in a sound wave is given by the equation \[{y_1} = Acos\left( {ax + bt} \right)\] where ,a and b are positive constants. The wave is reflected by an obstacle situated at x=0. The intensity of the reflected wave is 0.64 times that of the incident wave. Then, find out the wavelength and frequency of the incident wave.
Answer
Verified
115.8k+ views
Hint: In an equation, wavelength is represented by the Greek letter lambda (λ). Depending on the type of wave, wavelength can be measured in meters, centimeters, or nanometers (1 m = 109 nm). The frequency, represented by the Greek letter nu (ν), is the number of waves that pass a certain point in a specified amount of time.
Solution step by step we know the displacement equation of wave is
\[y = Acos\left( {kx + \omega t} \right)\] ....(1)
Now comparing equation 1 with the given equation \[{y_1} = Acos\left( {ax + bt} \right)\]
So, a = K and ω = b
Now, we know , $k = \dfrac{{2\pi }}{\lambda }$ , where $\lambda $ is the wavelength of the wave,
So, $a = \dfrac{{2\pi }}{\lambda }$
$\therefore \lambda = \dfrac{{2\pi }}{a}$
Also $\omega = 2\pi v$ , where v is the frequency of wave,
So, $v = \dfrac{b}{{2\pi }}$
So the wavelength and the frequency of the incident wave is $\dfrac{{2\pi }}{a},\dfrac{b}{{2\pi }}$ .
Note: Reflected and Transmitted waves at a boundary - definition. If a pulse is introduced at the left end of the rope, it will travel through the rope towards the right end of the medium. This pulse is called the incident pulse since it is incident towards (i.e., approaching) the boundary with the pole.
Solution step by step we know the displacement equation of wave is
\[y = Acos\left( {kx + \omega t} \right)\] ....(1)
Now comparing equation 1 with the given equation \[{y_1} = Acos\left( {ax + bt} \right)\]
So, a = K and ω = b
Now, we know , $k = \dfrac{{2\pi }}{\lambda }$ , where $\lambda $ is the wavelength of the wave,
So, $a = \dfrac{{2\pi }}{\lambda }$
$\therefore \lambda = \dfrac{{2\pi }}{a}$
Also $\omega = 2\pi v$ , where v is the frequency of wave,
So, $v = \dfrac{b}{{2\pi }}$
So the wavelength and the frequency of the incident wave is $\dfrac{{2\pi }}{a},\dfrac{b}{{2\pi }}$ .
Note: Reflected and Transmitted waves at a boundary - definition. If a pulse is introduced at the left end of the rope, it will travel through the rope towards the right end of the medium. This pulse is called the incident pulse since it is incident towards (i.e., approaching) the boundary with the pole.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Young's Double Slit Experiment Derivation
Current Loop as Magnetic Dipole and Its Derivation for JEE
When Barium is irradiated by a light of lambda 4000oversetomathopA class 12 physics JEE_Main