
The dimensions of electromotive force in terms of current $A$ are:
A) $\left[ {M{L^{ - 2}}{A^{ - 2}}} \right]$
B) $\left[ {M{L^2}{T^{ - 2}}{A^2}} \right]$
C) $\left[ {M{L^2}{T^{ - 2}}{A^{ - 2}}} \right]$
D) $\left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
Answer
146.1k+ views
Hint: To solve this question we should know about the base quantities which are used to form the dimensional formulae of any quantity. Also we should know how electromotive force is calculated i.e., the quantities involved in its calculation and their dimensional formulae.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Formulae used:
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Complete answer:
To solve this question we should know what electromotive force is. Electromotive force or the EMF, for short, of a cell is defined as the electric potential produced either by an electrochemical cell or by changing the magnetic field.
We know that,
$V = \dfrac{W}{q}$
Here $V$ is the potential difference across the cell or the electromotive force of the cell, $W$ is the work done by the charge and $q$ is the charge.
Let this be equation 1.
The potential difference gives us the value of the electromotive force or EMF of a cell. So,
$ \Rightarrow V = \dfrac{W}{q}$
Let this be equation 1.
This will give the value of electromotive force or EMF of a cell.
We know that the dimensional formulae of
$\left[ q \right] = \left[ {AT} \right]$
$\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Substituting the values of the above quantities in the equation 1 we get,
$ \Rightarrow \left[ V \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]}}$
$ \Rightarrow \left[ V \right] = \left[ {M{L^2}{T^{ - 3}}{A^{ - 1}}} \right]$
So the answer will be option (D).
Note: To solve questions related to dimensional analysis of any quantity, break the quantity into its smaller known units. Use the dimensional formulae of the smaller known units to find the dimensional formulae of the given quantity. Electromotive force is the energy per unit electric charge. It is the force driving all electrons. Flow of electrons is due to this force.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
