
The dimensional formula for young's modulus is:
A. $[M{L^{ - 1}}{T^{ - 2]}}$
B. $[{M^0}L{T^{ - 2}}]$
C. $[ML{T^{ - 2}}]$
D. $[M{L^2}{T^{ - 2}}]$
Answer
126.9k+ views
Hint In this type of question we have to define the unit of any physical quantity .After defining the unit we have to arrange it in the form of a fundamental unit like in mass, length and time.
For this type of question we have appropriate knowledge of the formula of that definition:
Complete Step by step solution
Young`s modulus is defined as the ratio of the stress and the strain
Mathematically, $young`s{\text{ modulus = }}\dfrac{{Stress}}{{strain}}$
Stress is defined as the force per unit area
Mathematically,$Stress = \dfrac{{force}}{{area}}$
Strain is defined as the ratio of the change in the length and original legth
Mathematically,$Strain = \dfrac{{\Delta l}}{l}$
Now $young`s{\text{ modulus = }}\dfrac{{Stress}}{{strain}}$
Putting the value of stress and strain in above given formula
$young`s{\text{ modulus = }}\dfrac{{\dfrac{{force}}{{area}}}}{{\dfrac{{\Delta l}}{l}}}$
So
$young`s{\text{ modulus = }}\dfrac{{force \times l}}{{area \times \Delta l}}$
$force = mass \times acceleration$
$
acceleration = \dfrac{{velocity}}{{time}} \\
velocity = \dfrac{{dis\tan ce}}{{time}} \\
$
$area = length \times length$
So after seeing above equation
If we write – for mass=M, for length=L and for time =T
So dimension for velocity will be$L{T^{ - 1}}$
Dimension for acceleration will be $L{T^{ - 2}}$
Similar dimension for force will be $ML{T^{ - 2}}$
Dimension for area will be ${L^2}$
So dimension for young`s modulus will be-
$\dfrac{{{\text{dimension of force }}}}{{\dim ension{\text{ of area}}}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
So dimension for young`s modulus will be:$M{L^{ - 1}}{T^{ - 2}}$
Hence answer number A will be the correct option.
Note Dimension is used to check the unit of similar quantities . After knowing the dimension we can formulate that physical quantity and after which we can define that quantity .
Dimension is also used to change the physical quantity from one unit system to another.
For this type of question we have appropriate knowledge of the formula of that definition:
Complete Step by step solution
Young`s modulus is defined as the ratio of the stress and the strain
Mathematically, $young`s{\text{ modulus = }}\dfrac{{Stress}}{{strain}}$
Stress is defined as the force per unit area
Mathematically,$Stress = \dfrac{{force}}{{area}}$
Strain is defined as the ratio of the change in the length and original legth
Mathematically,$Strain = \dfrac{{\Delta l}}{l}$
Now $young`s{\text{ modulus = }}\dfrac{{Stress}}{{strain}}$
Putting the value of stress and strain in above given formula
$young`s{\text{ modulus = }}\dfrac{{\dfrac{{force}}{{area}}}}{{\dfrac{{\Delta l}}{l}}}$
So
$young`s{\text{ modulus = }}\dfrac{{force \times l}}{{area \times \Delta l}}$
$force = mass \times acceleration$
$
acceleration = \dfrac{{velocity}}{{time}} \\
velocity = \dfrac{{dis\tan ce}}{{time}} \\
$
$area = length \times length$
So after seeing above equation
If we write – for mass=M, for length=L and for time =T
So dimension for velocity will be$L{T^{ - 1}}$
Dimension for acceleration will be $L{T^{ - 2}}$
Similar dimension for force will be $ML{T^{ - 2}}$
Dimension for area will be ${L^2}$
So dimension for young`s modulus will be-
$\dfrac{{{\text{dimension of force }}}}{{\dim ension{\text{ of area}}}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
So dimension for young`s modulus will be:$M{L^{ - 1}}{T^{ - 2}}$
Hence answer number A will be the correct option.
Note Dimension is used to check the unit of similar quantities . After knowing the dimension we can formulate that physical quantity and after which we can define that quantity .
Dimension is also used to change the physical quantity from one unit system to another.
Recently Updated Pages
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
