
The dimension of R in the equation \[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
(A) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}}\]
(B) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 2}}{{\text{A}}^{ - 3}}{\text{]}}\]
(C) \[{\text{[}}{{\text{M}}^2}{{\text{L}}^{\text{2}}}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}}\]
(D) \[{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^1}{{\text{A}}^{ - 2}}{\text{]}}\]
Answer
218.1k+ views
Hint Manipulate the equation and put R on the left side of the equation and the other terms on the right side. Then substitute the values of each quantity in terms of the fundamental quantities to get the required answer.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Complete step-by-step solution
As given in the question,
As we know that the energy stored in the capacitor is:
\[{\text{E = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C}}{{\text{V}}^{\text{2}}}\]
\[
{\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 2}}}}{{\text{A}}^{\text{0}}}{\text{] = }}\dfrac{{\text{1}}}{{\text{2}}}{\text{C[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{{\text{ - 3}}}}{{\text{A}}^{{\text{ - 1}}}}{{\text{]}}^{\text{2}}} \\
{\text{C = [}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^4}{{\text{A}}^{\text{2}}}{\text{]}} \\
\]
So the value of capacitance in terms of fundamental quantities is \[{\text{[}}{{\text{M}}^{{\text{ - 1}}}}{{\text{L}}^{{\text{ - 2}}}}{{\text{T}}^{\text{2}}}{{\text{A}}^{\text{2}}}{\text{]}}\]. Substituting this in the above equation we get,
\[{\text{Q = }}{{\text{Q}}_{\text{0}}}{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{)}}\]
\[{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{] = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{1}}}{\text{](1 - }}{{\text{e}}^{{\text{ - t/RC}}}})\]
\[
{\text{(1 - }}{{\text{e}}^{{\text{ - t/RC}}}}{\text{) = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{{\text{e}}^{{\text{ - t/RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
\dfrac{{{\text{ - t}}}}{{{\text{RC}}}}{\text{ = [}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{0}}}{{\text{A}}^{\text{0}}}{\text{]}} \\
{\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{0}}}{{\text{T}}^{\text{1}}}{{\text{A}}^{\text{0}}}{\text{] = R[}}{{\text{M}}^{ - 1}}{{\text{L}}^{ - 2}}{{\text{T}}^4}{{\text{A}}^2}{\text{]}} \\
{\text{R = [}}{{\text{M}}^1}{{\text{L}}^2}{{\text{T}}^{ - 3}}{{\text{A}}^{ - 2}}{\text{]}} \\
\]
Therefore the correct answer is option A
Note You can also do it in the way that the power of e is always going to be a dimensionless quantity. You can simply substitute t/rc to 1 and then solve the equation. Also we do not consider the negative sign if any in the equations, as we are supposed to only compare its dimensions and they will stay the same regardless of the negative sign.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

