
The density of ice is $917{\text{ kg/}}{{\text{m}}^3}$ . What will be the fraction of the volume of a piece of ice above water when it is floating in freshwater?
A. $0.083$
B. $0.042$
C. $0.412$
D. $0.813$
Answer
219.3k+ views
Hint: When a body is partially or completely immersed in a fluid, a force acts on it in the upward direction which is called force of buoyancy or buoyant force. It is given by ${F_B} = \sigma \times V \times g$ where $\sigma $ is the density of the body, $V$ is the volume of the body in consideration and $g$ is the acceleration due to gravity.
Due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Complete step by step answer
As given in the question, the ice is partially immersed in water.
We know that when a body is partially or completely immersed in a fluid, a force acts on it in the upward direction which is called force of buoyancy or buoyant force. It is given by ${F_B} = \sigma \times V \times g$ where $\sigma $ is the density of the body, $V$ is the volume of the body in consideration and $g$ is the acceleration due to gravity.
And according to the Archimedes’ Principle, due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Let $f$ be the fraction of volume of the ice that is inside the water. Then $\left( {1 - f} \right)$ will be the fraction of volume above water. We know that the density of water $\rho = 1000{\text{ kg/}}{{\text{m}}^3}$ and the density of ice is given $\sigma = 917{\text{ kg/}}{{\text{m}}^3}$ . Now, we apply Archimedes’ Principle to find the answer i.e.
${\text{Buoyant Force }} = {\text{ Displaced weight of water}}$
$\sigma \times \left( {1 - f} \right) \times V \times g = \rho \times f \times V \times g$
On substituting the value and simplifying we have
\[917 \times \left( {1 - f} \right) = 1000 \times f\]
On further solving we have
$f = 0.917$
Therefore, the fraction of volume of the ice above water is $\left( {1 - f} \right) = 1 - 0.917 = 0.083$
Hence, option A is correct.
Note: The Archimedes’ Principle has numerous important applications in our life. It is used in designing the ships, boats and other water bodies. They are also used in producing Hydrometers which are used to measure density of different liquids.
Due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Complete step by step answer
As given in the question, the ice is partially immersed in water.
We know that when a body is partially or completely immersed in a fluid, a force acts on it in the upward direction which is called force of buoyancy or buoyant force. It is given by ${F_B} = \sigma \times V \times g$ where $\sigma $ is the density of the body, $V$ is the volume of the body in consideration and $g$ is the acceleration due to gravity.
And according to the Archimedes’ Principle, due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Let $f$ be the fraction of volume of the ice that is inside the water. Then $\left( {1 - f} \right)$ will be the fraction of volume above water. We know that the density of water $\rho = 1000{\text{ kg/}}{{\text{m}}^3}$ and the density of ice is given $\sigma = 917{\text{ kg/}}{{\text{m}}^3}$ . Now, we apply Archimedes’ Principle to find the answer i.e.
${\text{Buoyant Force }} = {\text{ Displaced weight of water}}$
$\sigma \times \left( {1 - f} \right) \times V \times g = \rho \times f \times V \times g$
On substituting the value and simplifying we have
\[917 \times \left( {1 - f} \right) = 1000 \times f\]
On further solving we have
$f = 0.917$
Therefore, the fraction of volume of the ice above water is $\left( {1 - f} \right) = 1 - 0.917 = 0.083$
Hence, option A is correct.
Note: The Archimedes’ Principle has numerous important applications in our life. It is used in designing the ships, boats and other water bodies. They are also used in producing Hydrometers which are used to measure density of different liquids.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

