
The co-ordinates of the foot of the perpendicular drawn from the origin to a plane is \[\left( {2,4, - 3} \right)\]. Then find the equation of the plane.
A. \[2x - 4y - 3z = 29\]
B. \[2x - 4y + 3z = 29\]
C. \[2x + 4y - 3z = 29\]
D. None of these
Answer
164.7k+ views
Hint: First, calculate the general equation of the plane on the basis of the given point. Then, calculate the direction ratios of the plane. After that, substitute the values of the direction ratios in the equation and solve it to get the required answer.
Formula used: The equation of plane passing through the point \[\left( {{x_1},{y_1},{z_1}} \right)\] with direction ratios \[\left( {a,b,c} \right)\] is: \[a\left( {x - {x_1}} \right) + b\left( {y - {y_1}} \right) + c\left( {z - {z_1}} \right) = 0\] .
Complete step by step solution: Given: The co-ordinates of the foot of the perpendicular drawn from the origin to a plane is \[\left( {2,4, - 3} \right)\].
Let consider, \[\left( {a,b,c} \right)\] are the direction ratios of the required plane.
So, the equation of the plane passing through the point \[\left( {2,4, - 3} \right)\] is:
\[a\left( {x - 2} \right) + b\left( {y - 4} \right) + c\left( {z + 3} \right) = 0\] \[.....\left( 1 \right)\]
Since the line joining the origin and the point \[\left( {2,4, - 3} \right)\] is normal to the plane.
So, the direction ratios of normal to the plane are \[\left( {2,4, - 3} \right)\].
We get, \[a = 2,b = 4,c = - 3\]
Now substitute these values in the equation \[\left( 1 \right)\].
\[2\left( {x - 2} \right) + 4\left( {y - 4} \right) - 3\left( {z + 3} \right) = 0\]
\[ \Rightarrow 2x - 4 + 4y - 16 - 3z - 9 = 0\]
\[ \Rightarrow 2x + 4y - 3z - 29 = 0\]
\[ \Rightarrow 2x + 4y - 3z = 29\]
Thus, the equation of the required plane is \[2x + 4y - 3z = 29\].
Thus, Option (C) is correct.
Note: Students often get confused between the direction ratios and direction cosines. Remember the following formulas:
For the line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\]:
Direction ratios: \[\left( {{x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1}} \right)\]
Direction cosines: \[\left( {\dfrac{{{x_2} - {x_1}}}{w},\dfrac{{{y_2} - {y_1}}}{w},\dfrac{{{z_2} - {z_1}}}{w}} \right)\], where \[w = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} \]
Formula used: The equation of plane passing through the point \[\left( {{x_1},{y_1},{z_1}} \right)\] with direction ratios \[\left( {a,b,c} \right)\] is: \[a\left( {x - {x_1}} \right) + b\left( {y - {y_1}} \right) + c\left( {z - {z_1}} \right) = 0\] .
Complete step by step solution: Given: The co-ordinates of the foot of the perpendicular drawn from the origin to a plane is \[\left( {2,4, - 3} \right)\].
Let consider, \[\left( {a,b,c} \right)\] are the direction ratios of the required plane.
So, the equation of the plane passing through the point \[\left( {2,4, - 3} \right)\] is:
\[a\left( {x - 2} \right) + b\left( {y - 4} \right) + c\left( {z + 3} \right) = 0\] \[.....\left( 1 \right)\]
Since the line joining the origin and the point \[\left( {2,4, - 3} \right)\] is normal to the plane.
So, the direction ratios of normal to the plane are \[\left( {2,4, - 3} \right)\].
We get, \[a = 2,b = 4,c = - 3\]
Now substitute these values in the equation \[\left( 1 \right)\].
\[2\left( {x - 2} \right) + 4\left( {y - 4} \right) - 3\left( {z + 3} \right) = 0\]
\[ \Rightarrow 2x - 4 + 4y - 16 - 3z - 9 = 0\]
\[ \Rightarrow 2x + 4y - 3z - 29 = 0\]
\[ \Rightarrow 2x + 4y - 3z = 29\]
Thus, the equation of the required plane is \[2x + 4y - 3z = 29\].
Thus, Option (C) is correct.
Note: Students often get confused between the direction ratios and direction cosines. Remember the following formulas:
For the line joining the points \[\left( {{x_1},{y_1},{z_1}} \right)\] and \[\left( {{x_2},{y_2},{z_2}} \right)\]:
Direction ratios: \[\left( {{x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1}} \right)\]
Direction cosines: \[\left( {\dfrac{{{x_2} - {x_1}}}{w},\dfrac{{{y_2} - {y_1}}}{w},\dfrac{{{z_2} - {z_1}}}{w}} \right)\], where \[w = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{z_2} - {z_1}} \right)}^2}} \]
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Get P Block Elements for JEE Main 2025 with clear Explanations

Sets, Relations and Functions Chapter For JEE Main Maths

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
