
The coordinates of any point on the circle through the points \[A\left( 2,2 \right)\], \[B\left( 5,3 \right)\] and \[C\left( 3,-1 \right)\] can be written in the form \[\left( 4+\sqrt{5}\cos \theta ,1+\sqrt{5}\sin \theta \right)\]. Then the coordinates of the point\[P\] on \[BC\] such that \[AP\] is perpendicular to \[BC\] are
(a)\[\left( -1,4 \right)\]
(b)\[\left( 4,1 \right)\]
(c) \[\left( 1,4 \right)\]
(d)\[\left( 2,3 \right)\]
Answer
233.1k+ views
Hint: To find the coordinates of point \[P\] find the equation of line joining any two points and assume any point \[P\] on the line. Use the fact that the product of slopes of two perpendicular lines is \[-1\].
We have the points \[A\left( 2,2 \right)\], \[B\left( 5,3 \right)\] and \[C(3,-1)\] on the circle. Other points on the circle are of the form \[\left( 4+\sqrt{5}\cos \theta ,1+\sqrt{5}\sin \theta \right)\]. We want to find the coordinates of point \[P\] such that the line \[AP\] is perpendicular to the line \[BC\].
We will begin by finding the equation of line \[BC\].
We know that the equation of line joining any two points \[(a,b)\] and \[\left( c,d \right)\] is \[\left( y-b \right)=\dfrac{d-b}{c-a}\left( x-a \right)\].
To find the equation of line \[BC\], we will substitute \[a=5,b=3,c=3,d=-1\] in the above formula.
Thus, we have \[y-3=\dfrac{-1-3}{3-5}\left( x-5 \right)\] as the equation of line \[BC\].
\[\begin{align}
& \Rightarrow y-3=2\left( x-5 \right) \\
& \Rightarrow y-3=2x-10 \\
& \Rightarrow y=2x-7 \\
\end{align}\]
Hence, the equation of line \[BC\] is \[y=2x-7\]. \[...\left( 1 \right)\]
Now, we will find the point \[P\].
Let’s assume \[P\] has coordinates \[(u,v)\].
Substituting \[(u,v)\] in the equation of line, we have \[v=2u-7\]. \[...\left( 2 \right)\]
To find the slope of line \[AP\], we will substitute \[a=2,b=2,c=u,d=2u-7\] in the formula \[\left( \dfrac{d-b}{c-a} \right)\] of the slope of line.
Thus, we have \[\dfrac{2u-7-2}{u-2}=\dfrac{2u-9}{u-2}\] as the slope of \[AP\].
We know that the product of slopes of two perpendicular lines is \[-1\].
Thus, as \[AP\] and \[BC\] are perpendicular to each other, the product of their slopes is \[-1\].
Using equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we have \[2\left( \dfrac{2u-9}{u-2} \right)=-1\] as slope of line \[BC\] is \[-1\].
On further solving the equation, we have \[4u-18=-u+2\].
\[\begin{align}
& \Rightarrow 5u=20 \\
& \Rightarrow u=4 \\
\end{align}\]
Substituting the above value in equation \[\left( 2 \right)\], we get \[v=2u-7=2\left( 4 \right)-7=8-7=1\].
Thus, the coordinates of \[P\] are \[(u,v)=\left( 4,1 \right)\].
Hence, the correct answer is \[\left( 4,1 \right)\].
So, the answer is Option (b)
Note: One must observe that the point \[P\] is on the line \[BC\] and not on the circle. If you take point \[P\] on the circle, you will get an incorrect answer.
We have the points \[A\left( 2,2 \right)\], \[B\left( 5,3 \right)\] and \[C(3,-1)\] on the circle. Other points on the circle are of the form \[\left( 4+\sqrt{5}\cos \theta ,1+\sqrt{5}\sin \theta \right)\]. We want to find the coordinates of point \[P\] such that the line \[AP\] is perpendicular to the line \[BC\].
We will begin by finding the equation of line \[BC\].
We know that the equation of line joining any two points \[(a,b)\] and \[\left( c,d \right)\] is \[\left( y-b \right)=\dfrac{d-b}{c-a}\left( x-a \right)\].
To find the equation of line \[BC\], we will substitute \[a=5,b=3,c=3,d=-1\] in the above formula.
Thus, we have \[y-3=\dfrac{-1-3}{3-5}\left( x-5 \right)\] as the equation of line \[BC\].
\[\begin{align}
& \Rightarrow y-3=2\left( x-5 \right) \\
& \Rightarrow y-3=2x-10 \\
& \Rightarrow y=2x-7 \\
\end{align}\]
Hence, the equation of line \[BC\] is \[y=2x-7\]. \[...\left( 1 \right)\]
Now, we will find the point \[P\].
Let’s assume \[P\] has coordinates \[(u,v)\].
Substituting \[(u,v)\] in the equation of line, we have \[v=2u-7\]. \[...\left( 2 \right)\]
To find the slope of line \[AP\], we will substitute \[a=2,b=2,c=u,d=2u-7\] in the formula \[\left( \dfrac{d-b}{c-a} \right)\] of the slope of line.
Thus, we have \[\dfrac{2u-7-2}{u-2}=\dfrac{2u-9}{u-2}\] as the slope of \[AP\].
We know that the product of slopes of two perpendicular lines is \[-1\].
Thus, as \[AP\] and \[BC\] are perpendicular to each other, the product of their slopes is \[-1\].
Using equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we have \[2\left( \dfrac{2u-9}{u-2} \right)=-1\] as slope of line \[BC\] is \[-1\].
On further solving the equation, we have \[4u-18=-u+2\].
\[\begin{align}
& \Rightarrow 5u=20 \\
& \Rightarrow u=4 \\
\end{align}\]
Substituting the above value in equation \[\left( 2 \right)\], we get \[v=2u-7=2\left( 4 \right)-7=8-7=1\].
Thus, the coordinates of \[P\] are \[(u,v)=\left( 4,1 \right)\].
Hence, the correct answer is \[\left( 4,1 \right)\].
So, the answer is Option (b)
Note: One must observe that the point \[P\] is on the line \[BC\] and not on the circle. If you take point \[P\] on the circle, you will get an incorrect answer.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

