
The complex number $z = x + iy$ which satisfy the equation $\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1$, lie on
${\text{A}}{\text{.}}$ The x-axis
${\text{B}}{\text{.}}$ The straight line $y = 5$
${\text{C}}{\text{.}}$ A circle passing through the origin
${\text{D}}{\text{.}}$ None of these.
Answer
218.1k+ views
Hint – In this question use the property of modulus of a complex number which is $\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} $ to reach the answer.
Given equation is
$\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1$, where $z = x + iy$
Now as we know \[\left| {\dfrac{A}{B}} \right| = \dfrac{{\left| A \right|}}{{\left| B \right|}}\]
$ \Rightarrow \left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = \dfrac{{\left| {z - 5i} \right|}}{{\left| {z + 5i} \right|}} = 1$
$ \Rightarrow \left| {z - 5i} \right| = \left| {z + 5i} \right|$
Now substitute $z = x + iy$
\[
\Rightarrow \left| {x + iy - 5i} \right| = \left| {x + iy + 5i} \right| \\
\Rightarrow \left| {x + i\left( {y - 5} \right)} \right| = \left| {x + i\left( {y + 5} \right)} \right| \\
\]
Now as we know that $\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} $, so use this property we have
$\sqrt {{x^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {{x^2} + {{\left( {y + 5} \right)}^2}} $
Now squaring on both sides we have
$
{x^2} + {\left( {y - 5} \right)^2} = {x^2} + {\left( {y + 5} \right)^2} \\
\Rightarrow {\left( {y - 5} \right)^2} = {\left( {y + 5} \right)^2} \\
$
Now opening the square we have
$
{y^2} + 25 - 10y = {y^2} + 25 + 10y \\
\Rightarrow 20y = 0 \\
\Rightarrow y = 0 \\
$
And we all know y = 0 is nothing but a x-axis
Hence option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall all the properties of modulus which is stated above, then according to these properties simplify the given equation we will get the required answer.
Given equation is
$\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1$, where $z = x + iy$
Now as we know \[\left| {\dfrac{A}{B}} \right| = \dfrac{{\left| A \right|}}{{\left| B \right|}}\]
$ \Rightarrow \left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = \dfrac{{\left| {z - 5i} \right|}}{{\left| {z + 5i} \right|}} = 1$
$ \Rightarrow \left| {z - 5i} \right| = \left| {z + 5i} \right|$
Now substitute $z = x + iy$
\[
\Rightarrow \left| {x + iy - 5i} \right| = \left| {x + iy + 5i} \right| \\
\Rightarrow \left| {x + i\left( {y - 5} \right)} \right| = \left| {x + i\left( {y + 5} \right)} \right| \\
\]
Now as we know that $\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} $, so use this property we have
$\sqrt {{x^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {{x^2} + {{\left( {y + 5} \right)}^2}} $
Now squaring on both sides we have
$
{x^2} + {\left( {y - 5} \right)^2} = {x^2} + {\left( {y + 5} \right)^2} \\
\Rightarrow {\left( {y - 5} \right)^2} = {\left( {y + 5} \right)^2} \\
$
Now opening the square we have
$
{y^2} + 25 - 10y = {y^2} + 25 + 10y \\
\Rightarrow 20y = 0 \\
\Rightarrow y = 0 \\
$
And we all know y = 0 is nothing but a x-axis
Hence option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall all the properties of modulus which is stated above, then according to these properties simplify the given equation we will get the required answer.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

