
The complex number $z = x + iy$ which satisfy the equation $\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1$, lie on
${\text{A}}{\text{.}}$ The x-axis
${\text{B}}{\text{.}}$ The straight line $y = 5$
${\text{C}}{\text{.}}$ A circle passing through the origin
${\text{D}}{\text{.}}$ None of these.
Answer
232.8k+ views
Hint – In this question use the property of modulus of a complex number which is $\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} $ to reach the answer.
Given equation is
$\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1$, where $z = x + iy$
Now as we know \[\left| {\dfrac{A}{B}} \right| = \dfrac{{\left| A \right|}}{{\left| B \right|}}\]
$ \Rightarrow \left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = \dfrac{{\left| {z - 5i} \right|}}{{\left| {z + 5i} \right|}} = 1$
$ \Rightarrow \left| {z - 5i} \right| = \left| {z + 5i} \right|$
Now substitute $z = x + iy$
\[
\Rightarrow \left| {x + iy - 5i} \right| = \left| {x + iy + 5i} \right| \\
\Rightarrow \left| {x + i\left( {y - 5} \right)} \right| = \left| {x + i\left( {y + 5} \right)} \right| \\
\]
Now as we know that $\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} $, so use this property we have
$\sqrt {{x^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {{x^2} + {{\left( {y + 5} \right)}^2}} $
Now squaring on both sides we have
$
{x^2} + {\left( {y - 5} \right)^2} = {x^2} + {\left( {y + 5} \right)^2} \\
\Rightarrow {\left( {y - 5} \right)^2} = {\left( {y + 5} \right)^2} \\
$
Now opening the square we have
$
{y^2} + 25 - 10y = {y^2} + 25 + 10y \\
\Rightarrow 20y = 0 \\
\Rightarrow y = 0 \\
$
And we all know y = 0 is nothing but a x-axis
Hence option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall all the properties of modulus which is stated above, then according to these properties simplify the given equation we will get the required answer.
Given equation is
$\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1$, where $z = x + iy$
Now as we know \[\left| {\dfrac{A}{B}} \right| = \dfrac{{\left| A \right|}}{{\left| B \right|}}\]
$ \Rightarrow \left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = \dfrac{{\left| {z - 5i} \right|}}{{\left| {z + 5i} \right|}} = 1$
$ \Rightarrow \left| {z - 5i} \right| = \left| {z + 5i} \right|$
Now substitute $z = x + iy$
\[
\Rightarrow \left| {x + iy - 5i} \right| = \left| {x + iy + 5i} \right| \\
\Rightarrow \left| {x + i\left( {y - 5} \right)} \right| = \left| {x + i\left( {y + 5} \right)} \right| \\
\]
Now as we know that $\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} $, so use this property we have
$\sqrt {{x^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {{x^2} + {{\left( {y + 5} \right)}^2}} $
Now squaring on both sides we have
$
{x^2} + {\left( {y - 5} \right)^2} = {x^2} + {\left( {y + 5} \right)^2} \\
\Rightarrow {\left( {y - 5} \right)^2} = {\left( {y + 5} \right)^2} \\
$
Now opening the square we have
$
{y^2} + 25 - 10y = {y^2} + 25 + 10y \\
\Rightarrow 20y = 0 \\
\Rightarrow y = 0 \\
$
And we all know y = 0 is nothing but a x-axis
Hence option (a) is correct.
Note – In such types of questions the key concept we have to remember is that always recall all the properties of modulus which is stated above, then according to these properties simplify the given equation we will get the required answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

