
The chord joining two points ${\theta _1}{\text{ and }}{\theta _2}$on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ such that $\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}$ will subtend a right angle at
$
(a){\text{ focus}} \\
(b){\text{ center}} \\
(c){\text{ end of the major axis}} \\
(d){\text{ end of the minor axis}} \\
$
Answer
232.8k+ views
Hint: In this question suppose two points ${\theta _1}$ and ${\theta _2}$ such that ${\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$ and ${\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$through which the chord passes. Then use the concept of slope of line passing through two given points to find the slope of $O{\theta _1}{\text{ and O}}{\theta _2}$ where O is the origin. Use the concept that if two lines are perpendicular then their slopes are related as ${m_1} \times {m_2} = - 1$.
Complete step-by-step answer:

The chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is shown above.
As we know that the ellipse is having a center (O) = (0, 0) is also shown in the figure.
Let us suppose the point ${\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$ and ${\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$ is also shown in the figure.
Now as we know that the slope between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given as
Slope (m) = $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So find out the slopes of $\left( {O{\theta _1}} \right)$ and $\left( {O{\theta _2}} \right)$.
Let O = $(x_1, y_1)$ = (0, 0)
${\theta _1} = \left( {{x_2},{y_2}} \right) = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$
${\theta _2} = \left( {{x_3},{y_3}} \right) = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$
So let the slope of $\left( {0{\theta _1}} \right)$ be m1.
$ \Rightarrow {m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \dfrac{{b\sin {\theta _1} - 0}}{{a\cos {\theta _1} - 0}} = \dfrac{b}{a}\tan {\theta _1}$
Now let the slope of $\left( {O{\theta _2}} \right)$ be m2.
$ \Rightarrow {m_1} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}} = \dfrac{{b\sin {\theta _2} - 0}}{{a\cos {\theta _2} - 0}} = \dfrac{b}{a}\tan {\theta _2}$
Now multiply the slopes we have
$ \Rightarrow {m_1} \times {m_2} = \dfrac{b}{a}\tan {\theta _1} \times \dfrac{b}{a}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2}$........................ (1)
Now it is given that
$\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}$
Now substitute this value in equation (1) we have,
$ \Rightarrow {m_1} \times {m_2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{ - {a^2}}}{{{b^2}}} = - 1$
So multiplication of slopes is (-1) which is the condition of the right angle.
Therefore the chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ will subtend a right angle at origin or center.
Hence option (B) is correct.
Note: The center of the given ellipse that is $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is (0, 0) that is the origin that’s why option (c) is correct. The equation of shifted ellipse or the ellipse whose center is not at origin is given by $\dfrac{{{{\left( {x - p} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - q} \right)}^2}}}{{{b^2}}} = 1$ here the center is at (p, q).
Complete step-by-step answer:

The chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is shown above.
As we know that the ellipse is having a center (O) = (0, 0) is also shown in the figure.
Let us suppose the point ${\theta _1} = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$ and ${\theta _2} = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$ is also shown in the figure.
Now as we know that the slope between two points $(x_1, y_1)$ and $(x_2, y_2)$ is given as
Slope (m) = $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
So find out the slopes of $\left( {O{\theta _1}} \right)$ and $\left( {O{\theta _2}} \right)$.
Let O = $(x_1, y_1)$ = (0, 0)
${\theta _1} = \left( {{x_2},{y_2}} \right) = \left( {a\cos {\theta _1},b\sin {\theta _1}} \right)$
${\theta _2} = \left( {{x_3},{y_3}} \right) = \left( {a\cos {\theta _2},b\sin {\theta _2}} \right)$
So let the slope of $\left( {0{\theta _1}} \right)$ be m1.
$ \Rightarrow {m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \dfrac{{b\sin {\theta _1} - 0}}{{a\cos {\theta _1} - 0}} = \dfrac{b}{a}\tan {\theta _1}$
Now let the slope of $\left( {O{\theta _2}} \right)$ be m2.
$ \Rightarrow {m_1} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}} = \dfrac{{b\sin {\theta _2} - 0}}{{a\cos {\theta _2} - 0}} = \dfrac{b}{a}\tan {\theta _2}$
Now multiply the slopes we have
$ \Rightarrow {m_1} \times {m_2} = \dfrac{b}{a}\tan {\theta _1} \times \dfrac{b}{a}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2}$........................ (1)
Now it is given that
$\tan {\theta _1}\tan {\theta _2} = - \dfrac{{{a^2}}}{{{b^2}}}$
Now substitute this value in equation (1) we have,
$ \Rightarrow {m_1} \times {m_2} = \dfrac{{{b^2}}}{{{a^2}}}\tan {\theta _1}\tan {\theta _2} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{{ - {a^2}}}{{{b^2}}} = - 1$
So multiplication of slopes is (-1) which is the condition of the right angle.
Therefore the chord joining two points $\left( {{\theta _1},{\theta _2}} \right)$ on the ellipse $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ will subtend a right angle at origin or center.
Hence option (B) is correct.
Note: The center of the given ellipse that is $\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$ is (0, 0) that is the origin that’s why option (c) is correct. The equation of shifted ellipse or the ellipse whose center is not at origin is given by $\dfrac{{{{\left( {x - p} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - q} \right)}^2}}}{{{b^2}}} = 1$ here the center is at (p, q).
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

