
The charges stored in each capacitor ${C_1}$ and ${C_2}$ in the circuit shown below are.

$A.6\mu C,6\mu C$
$B.6\mu C,3\mu C$
$C.3\mu C,6\mu C$
$D.3\mu C,3\mu C$
Answer
232.8k+ views
Hint: Find out the current flowing through the circuit which is given by the ratio of voltage to the equivalent resistance $I = \dfrac{V}{R}$ . Voltage is the product of current and resistance which need to be calculated across the capacitors. The capacitors are connected in series so the effective capacitance will be evaluated from $C = \dfrac{{{C_1}{C_2}}}{{{C_1} + {C_2}}}$ . Now, charge is the product of capacitance and voltage which can be found by substituting the data. The charge of both the capacitors will be the same due to their series connection.
Complete step-by-step answer:
Consider the capacitors as fully charged, then current is not drawn from the cell.
The equivalent resistance of the circuit is \[6 + 3 + 3 = 12\]
Current of the circuit is given by,
$I = \dfrac{V}{R}$
Given that, $V = 12V$
$I = \dfrac{{12}}{{12}}$
$I = 1A$
Hence the current in the circuit is 1A.
Now the potential across the capacitors is
$V = IR$
$V = 6I + 3I + 3I$
$V = 9V$
The net capacitance between them is
$C = \dfrac{{{C_1}{C_2}}}{{{C_1} + {C_2}}}$
$C = \dfrac{2}{{2 + 1}}$
$C = \dfrac{2}{3}\mu F$
Now the equivalent charge is given by
$Q = CV$
$Q = \dfrac{2}{3} \times 9$
$Q = 6\mu C$
The capacitors are in series so the charge will be the same on both capacitors that is $Q = 6\mu C$.
The correct option is A.
Note: the effective capacitance in parallel grouping is given by,
$C = {C_1} + {C_2} + {C_3}$
For n identical capacitors in series, ${C_e} = \dfrac{C}{n}$
In parallel,${C_e} = nC$ .
Complete step-by-step answer:
Consider the capacitors as fully charged, then current is not drawn from the cell.
The equivalent resistance of the circuit is \[6 + 3 + 3 = 12\]
Current of the circuit is given by,
$I = \dfrac{V}{R}$
Given that, $V = 12V$
$I = \dfrac{{12}}{{12}}$
$I = 1A$
Hence the current in the circuit is 1A.
Now the potential across the capacitors is
$V = IR$
$V = 6I + 3I + 3I$
$V = 9V$
The net capacitance between them is
$C = \dfrac{{{C_1}{C_2}}}{{{C_1} + {C_2}}}$
$C = \dfrac{2}{{2 + 1}}$
$C = \dfrac{2}{3}\mu F$
Now the equivalent charge is given by
$Q = CV$
$Q = \dfrac{2}{3} \times 9$
$Q = 6\mu C$
The capacitors are in series so the charge will be the same on both capacitors that is $Q = 6\mu C$.
The correct option is A.
Note: the effective capacitance in parallel grouping is given by,
$C = {C_1} + {C_2} + {C_3}$
For n identical capacitors in series, ${C_e} = \dfrac{C}{n}$
In parallel,${C_e} = nC$ .
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

