
The bob of a simple pendulum at rest is given minimum velocity in horizontal direction, so that it describes a vertical circle of radius equal to the length of the simple pendulum. If velocity of the bob at the highest point is V, then velocity is at an angular displacement $60^o$ from lowest point:
(A) $\sqrt 2 $ V
(B) $\sqrt 3 $ V
(C) 2 V
(D) 3 V
Answer
144.3k+ views
Hint: Calculate the work done to use it in the work energy theorem and the velocity from the kinetic energy at the required state is the velocity at the given angular displacement.
Complete step – by - step solution:
First we need to calculate work done; in this case we know that,
$W = FS(1 - \cos \theta )$
F is the force, F=mg N
S is the displacement, S = 2R (twice radius at the top)
θ = 60 is angle subtended.
$
\therefore W = mg \times 2R(1 - \cos 60) \\
W = \dfrac{3}{2}mgR \\
$
Now using work energy theorem as work equal to difference in kinetic energy,
$
W = \Delta K \\
\dfrac{3}{2}mgR = \dfrac{{mV_0^2}}{2} - \dfrac{{m{{\left( {\sqrt {gR} } \right)}^2}}}{2} \\
{V_0} = 2\sqrt {gR} \\
{V_0} = 2V \\
$
Since $V = \sqrt {gR} $ and $V_0$ =2 V is the velocity at the angular displacement 60 from lowest point.
The correct option is C.
Note: The radius is taken as 2R because the radius at the top of the circle is twice the length of the pendulum so read as the diameter.
Complete step – by - step solution:
First we need to calculate work done; in this case we know that,
$W = FS(1 - \cos \theta )$
F is the force, F=mg N
S is the displacement, S = 2R (twice radius at the top)
θ = 60 is angle subtended.
$
\therefore W = mg \times 2R(1 - \cos 60) \\
W = \dfrac{3}{2}mgR \\
$
Now using work energy theorem as work equal to difference in kinetic energy,
$
W = \Delta K \\
\dfrac{3}{2}mgR = \dfrac{{mV_0^2}}{2} - \dfrac{{m{{\left( {\sqrt {gR} } \right)}^2}}}{2} \\
{V_0} = 2\sqrt {gR} \\
{V_0} = 2V \\
$
Since $V = \sqrt {gR} $ and $V_0$ =2 V is the velocity at the angular displacement 60 from lowest point.
The correct option is C.
Note: The radius is taken as 2R because the radius at the top of the circle is twice the length of the pendulum so read as the diameter.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
