
The bob of a simple pendulum at rest is given minimum velocity in horizontal direction, so that it describes a vertical circle of radius equal to the length of the simple pendulum. If velocity of the bob at the highest point is V, then velocity is at an angular displacement $60^o$ from lowest point:
(A) $\sqrt 2 $ V
(B) $\sqrt 3 $ V
(C) 2 V
(D) 3 V
Answer
139.5k+ views
Hint: Calculate the work done to use it in the work energy theorem and the velocity from the kinetic energy at the required state is the velocity at the given angular displacement.
Complete step – by - step solution:
First we need to calculate work done; in this case we know that,
$W = FS(1 - \cos \theta )$
F is the force, F=mg N
S is the displacement, S = 2R (twice radius at the top)
θ = 60 is angle subtended.
$
\therefore W = mg \times 2R(1 - \cos 60) \\
W = \dfrac{3}{2}mgR \\
$
Now using work energy theorem as work equal to difference in kinetic energy,
$
W = \Delta K \\
\dfrac{3}{2}mgR = \dfrac{{mV_0^2}}{2} - \dfrac{{m{{\left( {\sqrt {gR} } \right)}^2}}}{2} \\
{V_0} = 2\sqrt {gR} \\
{V_0} = 2V \\
$
Since $V = \sqrt {gR} $ and $V_0$ =2 V is the velocity at the angular displacement 60 from lowest point.
The correct option is C.
Note: The radius is taken as 2R because the radius at the top of the circle is twice the length of the pendulum so read as the diameter.
Complete step – by - step solution:
First we need to calculate work done; in this case we know that,
$W = FS(1 - \cos \theta )$
F is the force, F=mg N
S is the displacement, S = 2R (twice radius at the top)
θ = 60 is angle subtended.
$
\therefore W = mg \times 2R(1 - \cos 60) \\
W = \dfrac{3}{2}mgR \\
$
Now using work energy theorem as work equal to difference in kinetic energy,
$
W = \Delta K \\
\dfrac{3}{2}mgR = \dfrac{{mV_0^2}}{2} - \dfrac{{m{{\left( {\sqrt {gR} } \right)}^2}}}{2} \\
{V_0} = 2\sqrt {gR} \\
{V_0} = 2V \\
$
Since $V = \sqrt {gR} $ and $V_0$ =2 V is the velocity at the angular displacement 60 from lowest point.
The correct option is C.
Note: The radius is taken as 2R because the radius at the top of the circle is twice the length of the pendulum so read as the diameter.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
