
The block is placed on a frictionless surface in gravity free space. A heavy string of a mass m is connected and force F is applied on the string, then the tension at the middle of rope is:

A.$\dfrac{\left( \dfrac{m}{2}+M \right)F}{m+M}$
B.$\dfrac{\left( \dfrac{M}{2}+m \right)F}{m+M}$
C. zero
D.$\dfrac{MF}{m+M}$
Answer
217.5k+ views
Hint We know that tension is nothing but the drawing force acting on the body when it is hung from objects like chain, cable, string etc. It is represented by T. The direction of tension is the pull which is given the name tension. Thus, the tension will point away from the mass in the direction of the string or rope. In case of the hanging mass, the string pulls it upwards, so the string or rope exerts an upper force on the mass and the tension will be on the upper side. The tension force is the force that is transmitted through a string, rope, cable or wire when it is pulled tight by forces acting from opposite ends. The tension force is directed along the length of the wire and pulls equally on the objects on the opposite ends of the wire. Based on this concept we have to solve this question.
Complete step by step answer
We know that the tension at any point on the rope is basically what force acts on the remaining part.
Now we can say that due to force $F$, the whole system would move with an acceleration of $\mathrm{a}=\dfrac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}$
Then, at the midpoint of the rope the tension should be equal to the value of the force which would be able to pull the left part of the rope and the block with acceleration a.
Hence the conclusion can be drawn as:
$\therefore \mathrm{T}=\left(\mathrm{M}+\dfrac{\mathrm{m}}{2}\right) \dfrac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}$
Hence, we can say that the correct answer is option A.
Note: We should know that the weight of an object may be thought of as acting at a single point called its centre of mass. Depending on the object's shape, its centre of mass can be inside or outside it. The weight of an object and its mass are directly proportional. The centre of mass of an object is the point at which the object can be balanced. The centre of mass is useful because problems can often be simplified by treating a collection of masses as one mass at their common centre of mass. The weight of the object then acts through this point. In the human form the centre of mass has no fixed point but is dependent on the position of the performer at any given time. Due to the body composition the centre of mass of all athletes varies, as bone, fat, tissue and muscle all contribute to total mass and are in different proportions in each performer.
Complete step by step answer
We know that the tension at any point on the rope is basically what force acts on the remaining part.
Now we can say that due to force $F$, the whole system would move with an acceleration of $\mathrm{a}=\dfrac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}$
Then, at the midpoint of the rope the tension should be equal to the value of the force which would be able to pull the left part of the rope and the block with acceleration a.
Hence the conclusion can be drawn as:
$\therefore \mathrm{T}=\left(\mathrm{M}+\dfrac{\mathrm{m}}{2}\right) \dfrac{\mathrm{F}}{\mathrm{M}+\mathrm{m}}$
Hence, we can say that the correct answer is option A.
Note: We should know that the weight of an object may be thought of as acting at a single point called its centre of mass. Depending on the object's shape, its centre of mass can be inside or outside it. The weight of an object and its mass are directly proportional. The centre of mass of an object is the point at which the object can be balanced. The centre of mass is useful because problems can often be simplified by treating a collection of masses as one mass at their common centre of mass. The weight of the object then acts through this point. In the human form the centre of mass has no fixed point but is dependent on the position of the performer at any given time. Due to the body composition the centre of mass of all athletes varies, as bone, fat, tissue and muscle all contribute to total mass and are in different proportions in each performer.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

