
The angle between the lines represented by the $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$ is
A. ${30^ \circ }$
B. ${45^ \circ }$
C. ${60^ \circ }$
D. ${90^ \circ }$
Answer
163.2k+ views
Hint: We have to find the angle between the lines for that first we will compare the given equation $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$ with general equation $a{x^2} + 2hxy + b{y^2} = 0$ and find the value of $a$,$b$ and $h$. Then all these values in the formula for the angle between the curves to find the angle.
Formula Used:
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Complete step by step solution: Given, equation is $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = \lambda $, $h = {(1 - \lambda )^2}$ and $b = - \lambda $
We know the angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{{\lambda + \left( { - \lambda } \right)}}} \right|\]
After solving, we get
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|\]
Taking ${\tan ^{ - 1}}$ on both sides
\[{\tan ^{ - 1}}\left( {\tan \alpha } \right) = {\tan ^{ - 1}}\left( {\left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|} \right)\]
$\alpha = {90^ \circ }$
Hence, the angle between the lines is ${90^ \circ }$
Therefore, option D is correct
Note: Students should solve the question correctly to avoid any mistakes. They should know that $\tan {90^ \circ }$ is undefined if they do not know about that they might get confused while solving for $\alpha $.
Formula Used:
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Complete step by step solution: Given, equation is $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = \lambda $, $h = {(1 - \lambda )^2}$ and $b = - \lambda $
We know the angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{{\lambda + \left( { - \lambda } \right)}}} \right|\]
After solving, we get
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|\]
Taking ${\tan ^{ - 1}}$ on both sides
\[{\tan ^{ - 1}}\left( {\tan \alpha } \right) = {\tan ^{ - 1}}\left( {\left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|} \right)\]
$\alpha = {90^ \circ }$
Hence, the angle between the lines is ${90^ \circ }$
Therefore, option D is correct
Note: Students should solve the question correctly to avoid any mistakes. They should know that $\tan {90^ \circ }$ is undefined if they do not know about that they might get confused while solving for $\alpha $.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
