
The angle between the lines represented by the $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$ is
A. ${30^ \circ }$
B. ${45^ \circ }$
C. ${60^ \circ }$
D. ${90^ \circ }$
Answer
161.7k+ views
Hint: We have to find the angle between the lines for that first we will compare the given equation $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$ with general equation $a{x^2} + 2hxy + b{y^2} = 0$ and find the value of $a$,$b$ and $h$. Then all these values in the formula for the angle between the curves to find the angle.
Formula Used:
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Complete step by step solution: Given, equation is $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = \lambda $, $h = {(1 - \lambda )^2}$ and $b = - \lambda $
We know the angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{{\lambda + \left( { - \lambda } \right)}}} \right|\]
After solving, we get
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|\]
Taking ${\tan ^{ - 1}}$ on both sides
\[{\tan ^{ - 1}}\left( {\tan \alpha } \right) = {\tan ^{ - 1}}\left( {\left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|} \right)\]
$\alpha = {90^ \circ }$
Hence, the angle between the lines is ${90^ \circ }$
Therefore, option D is correct
Note: Students should solve the question correctly to avoid any mistakes. They should know that $\tan {90^ \circ }$ is undefined if they do not know about that they might get confused while solving for $\alpha $.
Formula Used:
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Complete step by step solution: Given, equation is $\lambda {x^2} + {\left( {1 - \lambda } \right)^2}xy - \lambda {y^2} = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = \lambda $, $h = {(1 - \lambda )^2}$ and $b = - \lambda $
We know the angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{{\lambda + \left( { - \lambda } \right)}}} \right|\]
After solving, we get
\[\tan \alpha = \left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|\]
Taking ${\tan ^{ - 1}}$ on both sides
\[{\tan ^{ - 1}}\left( {\tan \alpha } \right) = {\tan ^{ - 1}}\left( {\left| {\dfrac{{2\sqrt {\left( {\dfrac{{{{\left( {1 - \lambda } \right)}^2}}}{2}} \right) - (\lambda )( - \lambda )} }}{0}} \right|} \right)\]
$\alpha = {90^ \circ }$
Hence, the angle between the lines is ${90^ \circ }$
Therefore, option D is correct
Note: Students should solve the question correctly to avoid any mistakes. They should know that $\tan {90^ \circ }$ is undefined if they do not know about that they might get confused while solving for $\alpha $.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
