
The acceleration of a particle is increasing linearly with time $t$ as \[bt\]. The particle starts from the origin with an initial velocity ${V_0}$. The distance travelled by the particle in time $t$ will be _____?
Answer
232.8k+ views
Hint: If the acceleration of the particle changes with the flow of time, in that case the acceleration of the particle is a complex motion and the particle's acceleration is difficult to analyze. But if the acceleration of a particle is increasing linearly with time then the relation of particle's velocity, acceleration and displacement would be easy to explain numerically.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

