
The acceleration of a particle is increasing linearly with time $t$ as \[bt\]. The particle starts from the origin with an initial velocity ${V_0}$. The distance travelled by the particle in time $t$ will be _____?
Answer
147.3k+ views
Hint: If the acceleration of the particle changes with the flow of time, in that case the acceleration of the particle is a complex motion and the particle's acceleration is difficult to analyze. But if the acceleration of a particle is increasing linearly with time then the relation of particle's velocity, acceleration and displacement would be easy to explain numerically.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
