
The acceleration of a particle is increasing linearly with time $t$ as \[bt\]. The particle starts from the origin with an initial velocity ${V_0}$. The distance travelled by the particle in time $t$ will be _____?
Answer
216k+ views
Hint: If the acceleration of the particle changes with the flow of time, in that case the acceleration of the particle is a complex motion and the particle's acceleration is difficult to analyze. But if the acceleration of a particle is increasing linearly with time then the relation of particle's velocity, acceleration and displacement would be easy to explain numerically.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Other Pages
Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Two identical balls are projected one vertically up class 11 physics JEE_MAIN

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

