
The acceleration of a particle is increasing linearly with time $t$ as \[bt\]. The particle starts from the origin with an initial velocity ${V_0}$. The distance travelled by the particle in time $t$ will be _____?
Answer
217.5k+ views
Hint: If the acceleration of the particle changes with the flow of time, in that case the acceleration of the particle is a complex motion and the particle's acceleration is difficult to analyze. But if the acceleration of a particle is increasing linearly with time then the relation of particle's velocity, acceleration and displacement would be easy to explain numerically.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Formula Used:
\[a = \dfrac{v}{t}\]
$v = \dfrac{s}{t}$
Where,
$a$: acceleration, $v$: velocity, $s$: displacement, $t$: time.
Formula of Integration:- $\int {{x^n}} dx$
$ = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$
Where $c$ is constant of integration, whose value can be anything.
Complete step by step answer:
$a = \dfrac{v}{t} = \dfrac{{dv}}{{dt}}$
Because the acceleration of a particle is increasing linearly with time, so:-
$a = bt$
Integrate this and we get $v$,
$\int {bt} $
$\Rightarrow$ $ = \int {\dfrac{{b{t^{1 + 1}}}}{{1 + 1}}} $
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + c$
The particle starts from the origin with an initial velocity ${V_0}$, so:-
${V_0} = c$
$\Rightarrow$ $v = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $v = \dfrac{s}{t} = \dfrac{{ds}}{{dt}}$
$\dfrac{{ds}}{{dt}} = \dfrac{{b{t^2}}}{2} + {V_0}$
$\Rightarrow$ $ds = (\dfrac{{b{t^2}}}{2} + {V_0})dt$
Integrating the equation we get:-
$\Rightarrow$ $ds = (\dfrac{1}{2}\int {\dfrac{{b{t^{2 + 1}}}}{{2 + 1}} + \int {{V_0}} )} $
$\Rightarrow$ $s = (\dfrac{1}{6}b{t^3} + {V_0}t) + c$ and $c = 0$
Hence, $s = \dfrac{{b{t^3}}}{6} + {V_0}t$
Note: When the particle changes his velocity in between time-period is called acceleration of the particle. Acceleration is a vector quantity that is defined as the rate at which an object changes its velocity. An object is accelerating if it is changing its velocity.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

