
Suppose f is such that \[f\left( { - x} \right) = - f\left( x \right)\;\]for every real x and \[\int_0^1 {f\left( x \right)dx} = 5\], then find the value of \[\int_{ - 1}^0 {f\left( t \right)dt} \].
A. 10
B. 0
C. 5
D. -5
Answer
217.5k+ views
Hint: We will determine the nature of f. It means we will find whether f is an odd function or an even function by using given relation. Then we apply the property of definite integral to calculate the value of \[\int_{ - 1}^1 {f\left( x \right)dx} \]. Then break the interval of the integration and substitute the value of \[\int_0^1 {f\left( x \right)dx} \] to the value of \[\int_{ - 1}^0 {f\left( t \right)dt} \].
Formula Used:Definite integral property:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\].
Complete step by step solution:Given that \[f\left( { - x} \right) = - f\left( x \right)\;\].
Thus \[f\left( x \right)\;\] is an odd function.
According the property of definite integral \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
That is\[\int_{ - a}^a {f\left( x \right)dx} = 0\]
Now putting a = 1
\[\int_{ - 1}^1 {f\left( x \right)dx} = 0\]
Apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where a = 1, b = -1 and c = 0
\[\int_{ - 1}^1 {f\left( x \right)dx} = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} = 0\]
Now substitute \[\int_0^1 {f\left( x \right)dx} = 5\]
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} + 5 = 0\]
Subtract 5 from both sides:
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} = - 5\]
Now applying the property \[\int {f\left( x \right)dx} = \int {f\left( t \right)dt} \]:
\[ \Rightarrow \int_{ - 1}^0 {f\left( t \right)dt} = - 5\]
Option ‘D’ is correct
Note: Students often make mistake when they solve this type question. They evaluate the value of \[f\left( x \right)\] from relation \[f\left( { - x} \right) = - f\left( x \right)\;\] and substitution in \[\int_0^1 {f\left( x \right)dx} = 5\]. Then they try to solve it. But it is incorrect way. To solve this type of definite integral, we have to use definite integral property.
Formula Used:Definite integral property:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\].
Complete step by step solution:Given that \[f\left( { - x} \right) = - f\left( x \right)\;\].
Thus \[f\left( x \right)\;\] is an odd function.
According the property of definite integral \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
That is\[\int_{ - a}^a {f\left( x \right)dx} = 0\]
Now putting a = 1
\[\int_{ - 1}^1 {f\left( x \right)dx} = 0\]
Apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where a = 1, b = -1 and c = 0
\[\int_{ - 1}^1 {f\left( x \right)dx} = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} = 0\]
Now substitute \[\int_0^1 {f\left( x \right)dx} = 5\]
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} + 5 = 0\]
Subtract 5 from both sides:
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} = - 5\]
Now applying the property \[\int {f\left( x \right)dx} = \int {f\left( t \right)dt} \]:
\[ \Rightarrow \int_{ - 1}^0 {f\left( t \right)dt} = - 5\]
Option ‘D’ is correct
Note: Students often make mistake when they solve this type question. They evaluate the value of \[f\left( x \right)\] from relation \[f\left( { - x} \right) = - f\left( x \right)\;\] and substitution in \[\int_0^1 {f\left( x \right)dx} = 5\]. Then they try to solve it. But it is incorrect way. To solve this type of definite integral, we have to use definite integral property.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

