
Suppose f is such that \[f\left( { - x} \right) = - f\left( x \right)\;\]for every real x and \[\int_0^1 {f\left( x \right)dx} = 5\], then find the value of \[\int_{ - 1}^0 {f\left( t \right)dt} \].
A. 10
B. 0
C. 5
D. -5
Answer
233.1k+ views
Hint: We will determine the nature of f. It means we will find whether f is an odd function or an even function by using given relation. Then we apply the property of definite integral to calculate the value of \[\int_{ - 1}^1 {f\left( x \right)dx} \]. Then break the interval of the integration and substitute the value of \[\int_0^1 {f\left( x \right)dx} \] to the value of \[\int_{ - 1}^0 {f\left( t \right)dt} \].
Formula Used:Definite integral property:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\].
Complete step by step solution:Given that \[f\left( { - x} \right) = - f\left( x \right)\;\].
Thus \[f\left( x \right)\;\] is an odd function.
According the property of definite integral \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
That is\[\int_{ - a}^a {f\left( x \right)dx} = 0\]
Now putting a = 1
\[\int_{ - 1}^1 {f\left( x \right)dx} = 0\]
Apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where a = 1, b = -1 and c = 0
\[\int_{ - 1}^1 {f\left( x \right)dx} = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} = 0\]
Now substitute \[\int_0^1 {f\left( x \right)dx} = 5\]
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} + 5 = 0\]
Subtract 5 from both sides:
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} = - 5\]
Now applying the property \[\int {f\left( x \right)dx} = \int {f\left( t \right)dt} \]:
\[ \Rightarrow \int_{ - 1}^0 {f\left( t \right)dt} = - 5\]
Option ‘D’ is correct
Note: Students often make mistake when they solve this type question. They evaluate the value of \[f\left( x \right)\] from relation \[f\left( { - x} \right) = - f\left( x \right)\;\] and substitution in \[\int_0^1 {f\left( x \right)dx} = 5\]. Then they try to solve it. But it is incorrect way. To solve this type of definite integral, we have to use definite integral property.
Formula Used:Definite integral property:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\].
Complete step by step solution:Given that \[f\left( { - x} \right) = - f\left( x \right)\;\].
Thus \[f\left( x \right)\;\] is an odd function.
According the property of definite integral \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
That is\[\int_{ - a}^a {f\left( x \right)dx} = 0\]
Now putting a = 1
\[\int_{ - 1}^1 {f\left( x \right)dx} = 0\]
Apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where a = 1, b = -1 and c = 0
\[\int_{ - 1}^1 {f\left( x \right)dx} = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} = 0\]
Now substitute \[\int_0^1 {f\left( x \right)dx} = 5\]
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} + 5 = 0\]
Subtract 5 from both sides:
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} = - 5\]
Now applying the property \[\int {f\left( x \right)dx} = \int {f\left( t \right)dt} \]:
\[ \Rightarrow \int_{ - 1}^0 {f\left( t \right)dt} = - 5\]
Option ‘D’ is correct
Note: Students often make mistake when they solve this type question. They evaluate the value of \[f\left( x \right)\] from relation \[f\left( { - x} \right) = - f\left( x \right)\;\] and substitution in \[\int_0^1 {f\left( x \right)dx} = 5\]. Then they try to solve it. But it is incorrect way. To solve this type of definite integral, we have to use definite integral property.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

