
Suppose f is such that \[f\left( { - x} \right) = - f\left( x \right)\;\]for every real x and \[\int_0^1 {f\left( x \right)dx} = 5\], then find the value of \[\int_{ - 1}^0 {f\left( t \right)dt} \].
A. 10
B. 0
C. 5
D. -5
Answer
164.1k+ views
Hint: We will determine the nature of f. It means we will find whether f is an odd function or an even function by using given relation. Then we apply the property of definite integral to calculate the value of \[\int_{ - 1}^1 {f\left( x \right)dx} \]. Then break the interval of the integration and substitute the value of \[\int_0^1 {f\left( x \right)dx} \] to the value of \[\int_{ - 1}^0 {f\left( t \right)dt} \].
Formula Used:Definite integral property:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\].
Complete step by step solution:Given that \[f\left( { - x} \right) = - f\left( x \right)\;\].
Thus \[f\left( x \right)\;\] is an odd function.
According the property of definite integral \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
That is\[\int_{ - a}^a {f\left( x \right)dx} = 0\]
Now putting a = 1
\[\int_{ - 1}^1 {f\left( x \right)dx} = 0\]
Apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where a = 1, b = -1 and c = 0
\[\int_{ - 1}^1 {f\left( x \right)dx} = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} = 0\]
Now substitute \[\int_0^1 {f\left( x \right)dx} = 5\]
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} + 5 = 0\]
Subtract 5 from both sides:
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} = - 5\]
Now applying the property \[\int {f\left( x \right)dx} = \int {f\left( t \right)dt} \]:
\[ \Rightarrow \int_{ - 1}^0 {f\left( t \right)dt} = - 5\]
Option ‘D’ is correct
Note: Students often make mistake when they solve this type question. They evaluate the value of \[f\left( x \right)\] from relation \[f\left( { - x} \right) = - f\left( x \right)\;\] and substitution in \[\int_0^1 {f\left( x \right)dx} = 5\]. Then they try to solve it. But it is incorrect way. To solve this type of definite integral, we have to use definite integral property.
Formula Used:Definite integral property:
\[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
\[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where \[b < c < a\].
Complete step by step solution:Given that \[f\left( { - x} \right) = - f\left( x \right)\;\].
Thus \[f\left( x \right)\;\] is an odd function.
According the property of definite integral \[\int_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}{0\,{\rm{if}}\,f\left( { - x} \right) = - f\left( x \right)}\\{2\int\limits_0^a {f\left( x \right)dx\,} {\rm{if}}\,f\left( { - x} \right) = f\left( x \right)}\end{array}} \right.\]
That is\[\int_{ - a}^a {f\left( x \right)dx} = 0\]
Now putting a = 1
\[\int_{ - 1}^1 {f\left( x \right)dx} = 0\]
Apply the property \[\int_b^a {f\left( x \right)dx} = \int_b^c {f\left( x \right)dx} + \int_c^a {f\left( x \right)dx} \] where a = 1, b = -1 and c = 0
\[\int_{ - 1}^1 {f\left( x \right)dx} = \int_{ - 1}^0 {f\left( x \right)dx} + \int_0^1 {f\left( x \right)dx} = 0\]
Now substitute \[\int_0^1 {f\left( x \right)dx} = 5\]
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} + 5 = 0\]
Subtract 5 from both sides:
\[ \Rightarrow \int_{ - 1}^0 {f\left( x \right)dx} = - 5\]
Now applying the property \[\int {f\left( x \right)dx} = \int {f\left( t \right)dt} \]:
\[ \Rightarrow \int_{ - 1}^0 {f\left( t \right)dt} = - 5\]
Option ‘D’ is correct
Note: Students often make mistake when they solve this type question. They evaluate the value of \[f\left( x \right)\] from relation \[f\left( { - x} \right) = - f\left( x \right)\;\] and substitution in \[\int_0^1 {f\left( x \right)dx} = 5\]. Then they try to solve it. But it is incorrect way. To solve this type of definite integral, we have to use definite integral property.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
