
Solve the following:
$\tan {20^ \circ } + \tan {40^ \circ } + \sqrt 3 {\text{ tan 2}}{{\text{0}}^ \circ }\tan {40^ \circ }$
Answer
145.2k+ views
Hint- In this question, it is stated that we must find the value of this expression, so in order to solve this question we have to use the simple formula of $\tan \left( {A + B} \right)$ . This formula will help you to do the simplification of this expression given above -
Complete step-by-step solution -
In this question we have to find out the value of $\tan {20^ \circ }{\text{ + }}\tan {40^ \circ } + {\text{ }}\sqrt 3 \tan {20^ \circ }\tan {40^ \circ }$.
Now we can write $\left( {\tan {\text{ }}{{60}^ \circ }} \right)$ in the following manner -
$\tan {60^ \circ }$ = $\tan \left( {{{40}^ \circ } + {{20}^ \circ }} \right)$ ------(1)
As we know that:-
$\tan \left( {A + B} \right){\text{ = }}\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ -------(2)
Now putting (2) into (1) we will get,
$\sqrt 3 {\text{ = }}{\dfrac{{\tan {{40}^ \circ } + tan{{20}^ \circ }}}{{1 - {\text{ tan4}}{{\text{0}}^ \circ }\tan {{20}^ \circ }}}^{}}$ $\left( {\tan {{60}^ \circ } = {\text{ }}\sqrt 3 } \right)$
By cross multiplication, we will get,
$\sqrt 3 - \sqrt 3 {\text{ tan4}}{{\text{0}}^ \circ }{\text{ tan2}}{{\text{0}}^ \circ }{\text{ = tan4}}{{\text{0}}^ \circ }{\text{ + tan2}}{{\text{0}}^ \circ }$
Or $\tan {40^ \circ } + \tan {20^ \circ }{\text{ + }}\sqrt 3 \tan {\text{4}}{{\text{0}}^ \circ }\tan {20^ \circ }{\text{ = }}\sqrt 3 $
Thus, the value of the given expression is $\sqrt 3 $ .
Note- Whenever we face such types of problems, the key concept is that we have to use the formula of trigonometric functions. Here in this question we have to apply the formula of $\tan \left( {A + B} \right)$ by applying the formula we will get our required equation after that we have to put the value of $\tan {60^ \circ }$that is $\sqrt 3 $ . Next step is to cross multiply the equation of $\tan \left( {A + B} \right)$ with $\sqrt 3 $ like we did in the question and we will get our final answer.
Complete step-by-step solution -
In this question we have to find out the value of $\tan {20^ \circ }{\text{ + }}\tan {40^ \circ } + {\text{ }}\sqrt 3 \tan {20^ \circ }\tan {40^ \circ }$.
Now we can write $\left( {\tan {\text{ }}{{60}^ \circ }} \right)$ in the following manner -
$\tan {60^ \circ }$ = $\tan \left( {{{40}^ \circ } + {{20}^ \circ }} \right)$ ------(1)
As we know that:-
$\tan \left( {A + B} \right){\text{ = }}\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ -------(2)
Now putting (2) into (1) we will get,
$\sqrt 3 {\text{ = }}{\dfrac{{\tan {{40}^ \circ } + tan{{20}^ \circ }}}{{1 - {\text{ tan4}}{{\text{0}}^ \circ }\tan {{20}^ \circ }}}^{}}$ $\left( {\tan {{60}^ \circ } = {\text{ }}\sqrt 3 } \right)$
By cross multiplication, we will get,
$\sqrt 3 - \sqrt 3 {\text{ tan4}}{{\text{0}}^ \circ }{\text{ tan2}}{{\text{0}}^ \circ }{\text{ = tan4}}{{\text{0}}^ \circ }{\text{ + tan2}}{{\text{0}}^ \circ }$
Or $\tan {40^ \circ } + \tan {20^ \circ }{\text{ + }}\sqrt 3 \tan {\text{4}}{{\text{0}}^ \circ }\tan {20^ \circ }{\text{ = }}\sqrt 3 $
Thus, the value of the given expression is $\sqrt 3 $ .
Note- Whenever we face such types of problems, the key concept is that we have to use the formula of trigonometric functions. Here in this question we have to apply the formula of $\tan \left( {A + B} \right)$ by applying the formula we will get our required equation after that we have to put the value of $\tan {60^ \circ }$that is $\sqrt 3 $ . Next step is to cross multiply the equation of $\tan \left( {A + B} \right)$ with $\sqrt 3 $ like we did in the question and we will get our final answer.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
