
Solve the following:
$\tan {20^ \circ } + \tan {40^ \circ } + \sqrt 3 {\text{ tan 2}}{{\text{0}}^ \circ }\tan {40^ \circ }$
Answer
233.1k+ views
Hint- In this question, it is stated that we must find the value of this expression, so in order to solve this question we have to use the simple formula of $\tan \left( {A + B} \right)$ . This formula will help you to do the simplification of this expression given above -
Complete step-by-step solution -
In this question we have to find out the value of $\tan {20^ \circ }{\text{ + }}\tan {40^ \circ } + {\text{ }}\sqrt 3 \tan {20^ \circ }\tan {40^ \circ }$.
Now we can write $\left( {\tan {\text{ }}{{60}^ \circ }} \right)$ in the following manner -
$\tan {60^ \circ }$ = $\tan \left( {{{40}^ \circ } + {{20}^ \circ }} \right)$ ------(1)
As we know that:-
$\tan \left( {A + B} \right){\text{ = }}\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ -------(2)
Now putting (2) into (1) we will get,
$\sqrt 3 {\text{ = }}{\dfrac{{\tan {{40}^ \circ } + tan{{20}^ \circ }}}{{1 - {\text{ tan4}}{{\text{0}}^ \circ }\tan {{20}^ \circ }}}^{}}$ $\left( {\tan {{60}^ \circ } = {\text{ }}\sqrt 3 } \right)$
By cross multiplication, we will get,
$\sqrt 3 - \sqrt 3 {\text{ tan4}}{{\text{0}}^ \circ }{\text{ tan2}}{{\text{0}}^ \circ }{\text{ = tan4}}{{\text{0}}^ \circ }{\text{ + tan2}}{{\text{0}}^ \circ }$
Or $\tan {40^ \circ } + \tan {20^ \circ }{\text{ + }}\sqrt 3 \tan {\text{4}}{{\text{0}}^ \circ }\tan {20^ \circ }{\text{ = }}\sqrt 3 $
Thus, the value of the given expression is $\sqrt 3 $ .
Note- Whenever we face such types of problems, the key concept is that we have to use the formula of trigonometric functions. Here in this question we have to apply the formula of $\tan \left( {A + B} \right)$ by applying the formula we will get our required equation after that we have to put the value of $\tan {60^ \circ }$that is $\sqrt 3 $ . Next step is to cross multiply the equation of $\tan \left( {A + B} \right)$ with $\sqrt 3 $ like we did in the question and we will get our final answer.
Complete step-by-step solution -
In this question we have to find out the value of $\tan {20^ \circ }{\text{ + }}\tan {40^ \circ } + {\text{ }}\sqrt 3 \tan {20^ \circ }\tan {40^ \circ }$.
Now we can write $\left( {\tan {\text{ }}{{60}^ \circ }} \right)$ in the following manner -
$\tan {60^ \circ }$ = $\tan \left( {{{40}^ \circ } + {{20}^ \circ }} \right)$ ------(1)
As we know that:-
$\tan \left( {A + B} \right){\text{ = }}\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$ -------(2)
Now putting (2) into (1) we will get,
$\sqrt 3 {\text{ = }}{\dfrac{{\tan {{40}^ \circ } + tan{{20}^ \circ }}}{{1 - {\text{ tan4}}{{\text{0}}^ \circ }\tan {{20}^ \circ }}}^{}}$ $\left( {\tan {{60}^ \circ } = {\text{ }}\sqrt 3 } \right)$
By cross multiplication, we will get,
$\sqrt 3 - \sqrt 3 {\text{ tan4}}{{\text{0}}^ \circ }{\text{ tan2}}{{\text{0}}^ \circ }{\text{ = tan4}}{{\text{0}}^ \circ }{\text{ + tan2}}{{\text{0}}^ \circ }$
Or $\tan {40^ \circ } + \tan {20^ \circ }{\text{ + }}\sqrt 3 \tan {\text{4}}{{\text{0}}^ \circ }\tan {20^ \circ }{\text{ = }}\sqrt 3 $
Thus, the value of the given expression is $\sqrt 3 $ .
Note- Whenever we face such types of problems, the key concept is that we have to use the formula of trigonometric functions. Here in this question we have to apply the formula of $\tan \left( {A + B} \right)$ by applying the formula we will get our required equation after that we have to put the value of $\tan {60^ \circ }$that is $\sqrt 3 $ . Next step is to cross multiply the equation of $\tan \left( {A + B} \right)$ with $\sqrt 3 $ like we did in the question and we will get our final answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

