
What is the solution of the differential equation \[x\left( {{e^{2y}} - 1} \right) dy + \left( {{x^2} - 1} \right){e^y}dx = 0\]?
A. \[{e^y} + {e^{ - y}} = \log x - \dfrac{{{x^2}}}{2} + c\]
B. \[{e^y} - {e^{ - y}} = \log x - \dfrac{{{x^2}}}{2} + c\]
C. \[{e^y} + {e^{ - y}} = \log x + \dfrac{{{x^2}}}{2} + c\]
D. None of these
Answer
216.9k+ views
Hint: Here, the first order differential equation is given. First, simplify the given equation. Then, integrate both sides of the equation with respect to the corresponding variables. After that, solve both integrals by using the standard integral rules and U-substitution method to get the solution of the given differential equation.
Formula used:
\[\int {\dfrac{1}{x}dx} = \log x\]
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
\[\int {{e^x}dx} = {e^x}\]
Complete step by step solution:
The given differential equation is \[x\left( {{e^{2y}} - 1} \right) dy + \left( {{x^2} - 1} \right){e^y}dx = 0\].
Let’s find out the solution of the given differential equation.
Simplify the given equation.
\[x\left( {{e^{2y}} - 1} \right) dy = - \left( {{x^2} - 1} \right){e^y}dx\]
\[ \Rightarrow \dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy = \dfrac{{\left( {1 - {x^2}} \right)}}{x}dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {\dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy} = \int {\dfrac{{\left( {1 - {x^2}} \right)}}{x}dx} \]
Simplify the integrals.
\[\int {\left[ {{e^y} - \dfrac{1}{{{e^y}}}} \right] dy} = \int {\left[ {\dfrac{1}{x} - x} \right]dx} \]
Apply the integration rule.
\[\int {{e^y} dy - } \int {\dfrac{1}{{{e^y}}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \]
\[ \Rightarrow \int {{e^y} dy - } \int {{e^{ - y}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \] \[.....\left( 1 \right)\]
Solve the integrals by applying the formulas \[\int {\dfrac{1}{x}dx} = \log x\], \[\int {{e^x}dx} = {e^x}\], and \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\].
Also apply U-substitution method to solve \[\int {{e^{ - y}}dy} \].
Substitute \[ - y = u\].
Differentiate the substitute equation.
We get,
\[ - dy = du\]
Then, we get the equation \[\left( 1 \right)\] as follows:
\[{e^y} - \int { - {e^u}} du = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
\[ \Rightarrow {e^y} + {e^u} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Resubstitute the value of \[u\].
\[{e^y} + {e^{ - y}} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Hence the correct option is A.
Note: Students often apply a wrong formula to integrate \[\dfrac {1}{x}\]. They integrate it by using the power formula of integration. But the correct formula is \[\int {\dfrac{1}{x}dx} = \log x + c\].
Formula used:
\[\int {\dfrac{1}{x}dx} = \log x\]
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
\[\int {{e^x}dx} = {e^x}\]
Complete step by step solution:
The given differential equation is \[x\left( {{e^{2y}} - 1} \right) dy + \left( {{x^2} - 1} \right){e^y}dx = 0\].
Let’s find out the solution of the given differential equation.
Simplify the given equation.
\[x\left( {{e^{2y}} - 1} \right) dy = - \left( {{x^2} - 1} \right){e^y}dx\]
\[ \Rightarrow \dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy = \dfrac{{\left( {1 - {x^2}} \right)}}{x}dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {\dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy} = \int {\dfrac{{\left( {1 - {x^2}} \right)}}{x}dx} \]
Simplify the integrals.
\[\int {\left[ {{e^y} - \dfrac{1}{{{e^y}}}} \right] dy} = \int {\left[ {\dfrac{1}{x} - x} \right]dx} \]
Apply the integration rule.
\[\int {{e^y} dy - } \int {\dfrac{1}{{{e^y}}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \]
\[ \Rightarrow \int {{e^y} dy - } \int {{e^{ - y}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \] \[.....\left( 1 \right)\]
Solve the integrals by applying the formulas \[\int {\dfrac{1}{x}dx} = \log x\], \[\int {{e^x}dx} = {e^x}\], and \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\].
Also apply U-substitution method to solve \[\int {{e^{ - y}}dy} \].
Substitute \[ - y = u\].
Differentiate the substitute equation.
We get,
\[ - dy = du\]
Then, we get the equation \[\left( 1 \right)\] as follows:
\[{e^y} - \int { - {e^u}} du = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
\[ \Rightarrow {e^y} + {e^u} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Resubstitute the value of \[u\].
\[{e^y} + {e^{ - y}} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Hence the correct option is A.
Note: Students often apply a wrong formula to integrate \[\dfrac {1}{x}\]. They integrate it by using the power formula of integration. But the correct formula is \[\int {\dfrac{1}{x}dx} = \log x + c\].
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

