
What is the solution of the differential equation \[x\left( {{e^{2y}} - 1} \right) dy + \left( {{x^2} - 1} \right){e^y}dx = 0\]?
A. \[{e^y} + {e^{ - y}} = \log x - \dfrac{{{x^2}}}{2} + c\]
B. \[{e^y} - {e^{ - y}} = \log x - \dfrac{{{x^2}}}{2} + c\]
C. \[{e^y} + {e^{ - y}} = \log x + \dfrac{{{x^2}}}{2} + c\]
D. None of these
Answer
232.8k+ views
Hint: Here, the first order differential equation is given. First, simplify the given equation. Then, integrate both sides of the equation with respect to the corresponding variables. After that, solve both integrals by using the standard integral rules and U-substitution method to get the solution of the given differential equation.
Formula used:
\[\int {\dfrac{1}{x}dx} = \log x\]
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
\[\int {{e^x}dx} = {e^x}\]
Complete step by step solution:
The given differential equation is \[x\left( {{e^{2y}} - 1} \right) dy + \left( {{x^2} - 1} \right){e^y}dx = 0\].
Let’s find out the solution of the given differential equation.
Simplify the given equation.
\[x\left( {{e^{2y}} - 1} \right) dy = - \left( {{x^2} - 1} \right){e^y}dx\]
\[ \Rightarrow \dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy = \dfrac{{\left( {1 - {x^2}} \right)}}{x}dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {\dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy} = \int {\dfrac{{\left( {1 - {x^2}} \right)}}{x}dx} \]
Simplify the integrals.
\[\int {\left[ {{e^y} - \dfrac{1}{{{e^y}}}} \right] dy} = \int {\left[ {\dfrac{1}{x} - x} \right]dx} \]
Apply the integration rule.
\[\int {{e^y} dy - } \int {\dfrac{1}{{{e^y}}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \]
\[ \Rightarrow \int {{e^y} dy - } \int {{e^{ - y}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \] \[.....\left( 1 \right)\]
Solve the integrals by applying the formulas \[\int {\dfrac{1}{x}dx} = \log x\], \[\int {{e^x}dx} = {e^x}\], and \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\].
Also apply U-substitution method to solve \[\int {{e^{ - y}}dy} \].
Substitute \[ - y = u\].
Differentiate the substitute equation.
We get,
\[ - dy = du\]
Then, we get the equation \[\left( 1 \right)\] as follows:
\[{e^y} - \int { - {e^u}} du = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
\[ \Rightarrow {e^y} + {e^u} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Resubstitute the value of \[u\].
\[{e^y} + {e^{ - y}} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Hence the correct option is A.
Note: Students often apply a wrong formula to integrate \[\dfrac {1}{x}\]. They integrate it by using the power formula of integration. But the correct formula is \[\int {\dfrac{1}{x}dx} = \log x + c\].
Formula used:
\[\int {\dfrac{1}{x}dx} = \log x\]
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
\[\int {{e^x}dx} = {e^x}\]
Complete step by step solution:
The given differential equation is \[x\left( {{e^{2y}} - 1} \right) dy + \left( {{x^2} - 1} \right){e^y}dx = 0\].
Let’s find out the solution of the given differential equation.
Simplify the given equation.
\[x\left( {{e^{2y}} - 1} \right) dy = - \left( {{x^2} - 1} \right){e^y}dx\]
\[ \Rightarrow \dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy = \dfrac{{\left( {1 - {x^2}} \right)}}{x}dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {\dfrac{{\left( {{e^{2y}} - 1} \right)}}{{{e^y}}} dy} = \int {\dfrac{{\left( {1 - {x^2}} \right)}}{x}dx} \]
Simplify the integrals.
\[\int {\left[ {{e^y} - \dfrac{1}{{{e^y}}}} \right] dy} = \int {\left[ {\dfrac{1}{x} - x} \right]dx} \]
Apply the integration rule.
\[\int {{e^y} dy - } \int {\dfrac{1}{{{e^y}}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \]
\[ \Rightarrow \int {{e^y} dy - } \int {{e^{ - y}}dy} = \int {\dfrac{1}{x}dx} - \int {xdx} \] \[.....\left( 1 \right)\]
Solve the integrals by applying the formulas \[\int {\dfrac{1}{x}dx} = \log x\], \[\int {{e^x}dx} = {e^x}\], and \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\].
Also apply U-substitution method to solve \[\int {{e^{ - y}}dy} \].
Substitute \[ - y = u\].
Differentiate the substitute equation.
We get,
\[ - dy = du\]
Then, we get the equation \[\left( 1 \right)\] as follows:
\[{e^y} - \int { - {e^u}} du = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
\[ \Rightarrow {e^y} + {e^u} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Resubstitute the value of \[u\].
\[{e^y} + {e^{ - y}} = \log\left( x \right) - \dfrac{{{x^2}}}{2} + c\]
Hence the correct option is A.
Note: Students often apply a wrong formula to integrate \[\dfrac {1}{x}\]. They integrate it by using the power formula of integration. But the correct formula is \[\int {\dfrac{1}{x}dx} = \log x + c\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

