
What is the solution of the differential equation \[\sqrt {a + x} \dfrac{{dy}}{{dx}} + x = 0\]?
A. \[3y + 2\sqrt {a + x} \cdot \left( {x - 2a} \right) = 3c\]
B. \[3y + 2\sqrt {a + x} \cdot \left( {x + 2a} \right) = 3c\]
C. \[3y + \sqrt {a + x} \cdot \left( {x - 2a} \right) = 3c\]
D. None of these
Answer
232.8k+ views
Hint:
The given differential equation is the combination of 2 variables. Thus we will separate the variables and apply the integration formula to get the solution.
Formula used
Power rule of integration:
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
Complete step-by-step answer:
Given differential equation is \[\sqrt {a + x} \dfrac{{dy}}{{dx}} + x = 0\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{x}{{\sqrt {a + x} }}\]
\[ \Rightarrow dy = - \dfrac{x}{{\sqrt {a + x} }}dx\]
Now add and subtract \[a\] from the numerator of the right side expression:
\[ \Rightarrow dy = - \dfrac{{x + a - a}}{{\sqrt {a + x} }} dx\]
Simplify the right-side expression:
\[ \Rightarrow dy = - \dfrac{{x + a}}{{\sqrt {a + x} }} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
\[ \Rightarrow dy = - \sqrt {a + x} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {dy} = - \int {\sqrt {a + x} dx} + \int {\dfrac{a}{{\sqrt {a + x} }} dx} \] …..(i)
Assume that \[a + x = z\]
\[\Rightarrow dx = dz\]
Substitute \[a + x = z\] and \[dx = dz\] in equation (i)
\[ \Rightarrow \int {dy} = - \int {\sqrt z dz} + \int {\dfrac{a}{{\sqrt z }} dz} \]
Applying power rule:
\[ \Rightarrow y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\]
\[ \Rightarrow y = - \dfrac{{{z^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{\sqrt z }}{{\dfrac{1}{2}}} + c\]
Simplify the above equation:
\[ \Rightarrow y = - \dfrac{{2{z^{\dfrac{3}{2}}}}}{3} + 2a\sqrt z + c\]
Substitute \[z = a + x\] in the above equation:
\[ \Rightarrow y = - \dfrac{{2{{\left( {a + x} \right)}^{\dfrac{3}{2}}}}}{3} + 2a\sqrt {a + x} + c\]
Multiply 3 both sides of the equation:
\[ \Rightarrow 3y = - 2{\left( {a + x} \right)^{\dfrac{3}{2}}} + 6a\sqrt {a + x} + 3c\]
Rewrite above equation:
\[ \Rightarrow 3y = - 2\left( {a + x} \right)\sqrt {a + x} + 6a\sqrt {a + x} + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {a + x - 3a} \right) + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {x - 2a} \right) + 3c\]
\[ \Rightarrow 3y + 2\sqrt {a + x} \left( {x - 2a} \right) = 3c\]
Hence option A is the correct option.
Note: Student often do mistake to integrate \[\dfrac{1}{{\sqrt z }}\]. They used by mistake the integration formula of \[\dfrac{1}{x}\]. They got \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\log z + c\] which is incorrect. The correct answer is \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\].
The given differential equation is the combination of 2 variables. Thus we will separate the variables and apply the integration formula to get the solution.
Formula used
Power rule of integration:
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
Complete step-by-step answer:
Given differential equation is \[\sqrt {a + x} \dfrac{{dy}}{{dx}} + x = 0\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{x}{{\sqrt {a + x} }}\]
\[ \Rightarrow dy = - \dfrac{x}{{\sqrt {a + x} }}dx\]
Now add and subtract \[a\] from the numerator of the right side expression:
\[ \Rightarrow dy = - \dfrac{{x + a - a}}{{\sqrt {a + x} }} dx\]
Simplify the right-side expression:
\[ \Rightarrow dy = - \dfrac{{x + a}}{{\sqrt {a + x} }} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
\[ \Rightarrow dy = - \sqrt {a + x} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {dy} = - \int {\sqrt {a + x} dx} + \int {\dfrac{a}{{\sqrt {a + x} }} dx} \] …..(i)
Assume that \[a + x = z\]
\[\Rightarrow dx = dz\]
Substitute \[a + x = z\] and \[dx = dz\] in equation (i)
\[ \Rightarrow \int {dy} = - \int {\sqrt z dz} + \int {\dfrac{a}{{\sqrt z }} dz} \]
Applying power rule:
\[ \Rightarrow y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\]
\[ \Rightarrow y = - \dfrac{{{z^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{\sqrt z }}{{\dfrac{1}{2}}} + c\]
Simplify the above equation:
\[ \Rightarrow y = - \dfrac{{2{z^{\dfrac{3}{2}}}}}{3} + 2a\sqrt z + c\]
Substitute \[z = a + x\] in the above equation:
\[ \Rightarrow y = - \dfrac{{2{{\left( {a + x} \right)}^{\dfrac{3}{2}}}}}{3} + 2a\sqrt {a + x} + c\]
Multiply 3 both sides of the equation:
\[ \Rightarrow 3y = - 2{\left( {a + x} \right)^{\dfrac{3}{2}}} + 6a\sqrt {a + x} + 3c\]
Rewrite above equation:
\[ \Rightarrow 3y = - 2\left( {a + x} \right)\sqrt {a + x} + 6a\sqrt {a + x} + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {a + x - 3a} \right) + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {x - 2a} \right) + 3c\]
\[ \Rightarrow 3y + 2\sqrt {a + x} \left( {x - 2a} \right) = 3c\]
Hence option A is the correct option.
Note: Student often do mistake to integrate \[\dfrac{1}{{\sqrt z }}\]. They used by mistake the integration formula of \[\dfrac{1}{x}\]. They got \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\log z + c\] which is incorrect. The correct answer is \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

