
What is the solution of the differential equation \[\sqrt {a + x} \dfrac{{dy}}{{dx}} + x = 0\]?
A. \[3y + 2\sqrt {a + x} \cdot \left( {x - 2a} \right) = 3c\]
B. \[3y + 2\sqrt {a + x} \cdot \left( {x + 2a} \right) = 3c\]
C. \[3y + \sqrt {a + x} \cdot \left( {x - 2a} \right) = 3c\]
D. None of these
Answer
161.1k+ views
Hint:
The given differential equation is the combination of 2 variables. Thus we will separate the variables and apply the integration formula to get the solution.
Formula used
Power rule of integration:
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
Complete step-by-step answer:
Given differential equation is \[\sqrt {a + x} \dfrac{{dy}}{{dx}} + x = 0\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{x}{{\sqrt {a + x} }}\]
\[ \Rightarrow dy = - \dfrac{x}{{\sqrt {a + x} }}dx\]
Now add and subtract \[a\] from the numerator of the right side expression:
\[ \Rightarrow dy = - \dfrac{{x + a - a}}{{\sqrt {a + x} }} dx\]
Simplify the right-side expression:
\[ \Rightarrow dy = - \dfrac{{x + a}}{{\sqrt {a + x} }} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
\[ \Rightarrow dy = - \sqrt {a + x} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {dy} = - \int {\sqrt {a + x} dx} + \int {\dfrac{a}{{\sqrt {a + x} }} dx} \] …..(i)
Assume that \[a + x = z\]
\[\Rightarrow dx = dz\]
Substitute \[a + x = z\] and \[dx = dz\] in equation (i)
\[ \Rightarrow \int {dy} = - \int {\sqrt z dz} + \int {\dfrac{a}{{\sqrt z }} dz} \]
Applying power rule:
\[ \Rightarrow y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\]
\[ \Rightarrow y = - \dfrac{{{z^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{\sqrt z }}{{\dfrac{1}{2}}} + c\]
Simplify the above equation:
\[ \Rightarrow y = - \dfrac{{2{z^{\dfrac{3}{2}}}}}{3} + 2a\sqrt z + c\]
Substitute \[z = a + x\] in the above equation:
\[ \Rightarrow y = - \dfrac{{2{{\left( {a + x} \right)}^{\dfrac{3}{2}}}}}{3} + 2a\sqrt {a + x} + c\]
Multiply 3 both sides of the equation:
\[ \Rightarrow 3y = - 2{\left( {a + x} \right)^{\dfrac{3}{2}}} + 6a\sqrt {a + x} + 3c\]
Rewrite above equation:
\[ \Rightarrow 3y = - 2\left( {a + x} \right)\sqrt {a + x} + 6a\sqrt {a + x} + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {a + x - 3a} \right) + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {x - 2a} \right) + 3c\]
\[ \Rightarrow 3y + 2\sqrt {a + x} \left( {x - 2a} \right) = 3c\]
Hence option A is the correct option.
Note: Student often do mistake to integrate \[\dfrac{1}{{\sqrt z }}\]. They used by mistake the integration formula of \[\dfrac{1}{x}\]. They got \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\log z + c\] which is incorrect. The correct answer is \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\].
The given differential equation is the combination of 2 variables. Thus we will separate the variables and apply the integration formula to get the solution.
Formula used
Power rule of integration:
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
Complete step-by-step answer:
Given differential equation is \[\sqrt {a + x} \dfrac{{dy}}{{dx}} + x = 0\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{x}{{\sqrt {a + x} }}\]
\[ \Rightarrow dy = - \dfrac{x}{{\sqrt {a + x} }}dx\]
Now add and subtract \[a\] from the numerator of the right side expression:
\[ \Rightarrow dy = - \dfrac{{x + a - a}}{{\sqrt {a + x} }} dx\]
Simplify the right-side expression:
\[ \Rightarrow dy = - \dfrac{{x + a}}{{\sqrt {a + x} }} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
\[ \Rightarrow dy = - \sqrt {a + x} dx + \dfrac{a}{{\sqrt {a + x} }} dx\]
Now taking integration on both sides:
\[ \Rightarrow \int {dy} = - \int {\sqrt {a + x} dx} + \int {\dfrac{a}{{\sqrt {a + x} }} dx} \] …..(i)
Assume that \[a + x = z\]
\[\Rightarrow dx = dz\]
Substitute \[a + x = z\] and \[dx = dz\] in equation (i)
\[ \Rightarrow \int {dy} = - \int {\sqrt z dz} + \int {\dfrac{a}{{\sqrt z }} dz} \]
Applying power rule:
\[ \Rightarrow y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\]
\[ \Rightarrow y = - \dfrac{{{z^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{\sqrt z }}{{\dfrac{1}{2}}} + c\]
Simplify the above equation:
\[ \Rightarrow y = - \dfrac{{2{z^{\dfrac{3}{2}}}}}{3} + 2a\sqrt z + c\]
Substitute \[z = a + x\] in the above equation:
\[ \Rightarrow y = - \dfrac{{2{{\left( {a + x} \right)}^{\dfrac{3}{2}}}}}{3} + 2a\sqrt {a + x} + c\]
Multiply 3 both sides of the equation:
\[ \Rightarrow 3y = - 2{\left( {a + x} \right)^{\dfrac{3}{2}}} + 6a\sqrt {a + x} + 3c\]
Rewrite above equation:
\[ \Rightarrow 3y = - 2\left( {a + x} \right)\sqrt {a + x} + 6a\sqrt {a + x} + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {a + x - 3a} \right) + 3c\]
\[ \Rightarrow 3y = - 2\sqrt {a + x} \left( {x - 2a} \right) + 3c\]
\[ \Rightarrow 3y + 2\sqrt {a + x} \left( {x - 2a} \right) = 3c\]
Hence option A is the correct option.
Note: Student often do mistake to integrate \[\dfrac{1}{{\sqrt z }}\]. They used by mistake the integration formula of \[\dfrac{1}{x}\]. They got \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\log z + c\] which is incorrect. The correct answer is \[y = - \dfrac{{{z^{1 + \dfrac{1}{2}}}}}{{\dfrac{3}{2}}} + a\dfrac{{{z^{1 - \dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + c\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
