
What is the solution of the differential equation \[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]?
A. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
B. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
C. \[\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
D. \[\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Answer
232.8k+ views
Hint: First we separate the variables of the given differential equation. Then simplify the equation after that we use the substitution method to apply the integration formula. Then solve the differential equation to get the result.
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

