
What is the solution of the differential equation \[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]?
A. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
B. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
C. \[\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
D. \[\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Answer
163.8k+ views
Hint: First we separate the variables of the given differential equation. Then simplify the equation after that we use the substitution method to apply the integration formula. Then solve the differential equation to get the result.
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
