
What is the solution of the differential equation \[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]?
A. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
B. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
C. \[\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
D. \[\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Answer
216.6k+ views
Hint: First we separate the variables of the given differential equation. Then simplify the equation after that we use the substitution method to apply the integration formula. Then solve the differential equation to get the result.
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

