
What is the solution of the differential equation \[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]?
A. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
B. \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
C. \[\log \left( {1 + {y^2}} \right) = \log x - {\tan ^{ - 1}}x + c\]
D. \[\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Answer
161.1k+ views
Hint: First we separate the variables of the given differential equation. Then simplify the equation after that we use the substitution method to apply the integration formula. Then solve the differential equation to get the result.
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Formula used:
Integration formula
\[\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + c\]
\[\int {\dfrac{1}{x}dx} = \log x + c\]
Complete step by step solution:
Given differential equation is
\[xy\dfrac{{dy}}{{dx}} = \dfrac{{\left( {1 + {y^2}} \right)\left( {1 + x + {x^2}} \right)}}{{\left( {1 + {x^2}} \right)}}\]
Separate the variables of the differential equation
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \dfrac{{\left( {1 + x + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}}dx\]
Break as a sum of two terms of the left side expression:
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{{\left( {1 + {x^2}} \right)}}{{x\left( {1 + {x^2}} \right)}} + \dfrac{x}{{x\left( {1 + {x^2}} \right)}}} \right]dx\]
Cancel out same terms from the right-side expression
\[ \Rightarrow y\dfrac{{dy}}{{\left( {1 + {y^2}} \right)}} = \left[ {\dfrac{1}{x} + \dfrac{1}{{\left( {1 + {x^2}} \right)}}} \right]dx\] …..(i)
Assume that, \[1 + {y^2} = z\]
Differentiate the above equation:
\[2ydy = dz\]
\[ \Rightarrow ydy = \dfrac{1}{2}dz\]
Substitute \[1 + {y^2} = z\] and \[ydy = \dfrac{1}{2}dz\] in equation (i)
\[ \Rightarrow \dfrac{{dz}}{{2z}} = \dfrac{1}{x}dx + \dfrac{1}{{\left( {1 + {x^2}} \right)}}dx\]
Integrating both sides:
\[ \Rightarrow \int {\dfrac{{dz}}{{2z}}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
\[ \Rightarrow \dfrac{1}{2}\int {\dfrac{{dz}}{z}} = \int {\dfrac{1}{x}dx} + \int {\dfrac{1}{{\left( {1 + {x^2}} \right)}}dx} \]
Apply the integration formula
\[ \Rightarrow \dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\]
Substitute \[1 + {y^2} = z\] in the above equation
\[ \Rightarrow \dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\]
Hence option B is the correct option.
Note: Students often forget to substitute the value of z. Then get \[\dfrac{1}{2}\log z = \log x + {\tan ^{ - 1}}x + c\] which is incorrect. The correct answer is \[\dfrac{1}{2}\log \left( {1 + {y^2}} \right) = \log x + {\tan ^{ - 1}}x + c\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
