
What is the solution of the differential equation \[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} + {y^2} + x{y^2} = 0\]?
A. \[\log \left( {\dfrac{x}{y}} \right) = \dfrac{1}{x} + \dfrac{1}{y} + c\]
B. \[\log \left( {\dfrac{y}{x}} \right) = \dfrac{1}{x} + \dfrac{1}{y} + c\]
C. \[\log \left( {xy} \right) = \dfrac{1}{x} + \dfrac{1}{y} + c\]
D. \[\log \left( {xy} \right) + \dfrac{1}{x} + \dfrac{1}{y} = c\]
Answer
164.7k+ views
Hint: First we separate all variables of the differential equation. Then take integration operations on both sides of the equation and by using integration formulas solve it.
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\]
Complete step by step solution:
Given differential equation is \[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} + {y^2} + x{y^2} = 0\].
Now we will separate the variable of the differential equation:
\[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
\[ \Rightarrow {x^2}\left( {1 - y} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
Divide both sides by \[{x^2}{y^2}\]
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
Cancel out same terms from the denominator and numerator:
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}dy = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}dx\]
Break it into terms:
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy = - \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx\]
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy + \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx = 0\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{1}{{{y^2}}}dy} - \int {\dfrac{1}{y}dy} + \int {\dfrac{1}{{{x^2}}}dx} + \int {\dfrac{1}{x}dx} = 0\]
Applying integration formula:
\[ \Rightarrow - \dfrac{1}{y} - \log y - \dfrac{1}{x} + \log x = c\]
Rewrite the above equation:
\[ \Rightarrow \log x - \log y = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {\dfrac{x}{y}} \right) = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Hence option A is the correct option.
Note: Students often do mistake to integrate \[\int {\dfrac{1}{{{x^2}}}dx} \].They apply the formula \[\int {\dfrac{1}{{{x^2}}}dx} = \dfrac{1}{x} + c\] which is incorrect formula. The correct formula is \[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\].
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\]
Complete step by step solution:
Given differential equation is \[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} + {y^2} + x{y^2} = 0\].
Now we will separate the variable of the differential equation:
\[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
\[ \Rightarrow {x^2}\left( {1 - y} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
Divide both sides by \[{x^2}{y^2}\]
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
Cancel out same terms from the denominator and numerator:
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}dy = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}dx\]
Break it into terms:
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy = - \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx\]
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy + \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx = 0\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{1}{{{y^2}}}dy} - \int {\dfrac{1}{y}dy} + \int {\dfrac{1}{{{x^2}}}dx} + \int {\dfrac{1}{x}dx} = 0\]
Applying integration formula:
\[ \Rightarrow - \dfrac{1}{y} - \log y - \dfrac{1}{x} + \log x = c\]
Rewrite the above equation:
\[ \Rightarrow \log x - \log y = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {\dfrac{x}{y}} \right) = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Hence option A is the correct option.
Note: Students often do mistake to integrate \[\int {\dfrac{1}{{{x^2}}}dx} \].They apply the formula \[\int {\dfrac{1}{{{x^2}}}dx} = \dfrac{1}{x} + c\] which is incorrect formula. The correct formula is \[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\].
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
