
Solubility product of silver bromide $5 \times {{10}^{-13}}$ . the quantity of potassium bromide (molar mass is taken as $120g/mol$ ) to be added to 1 litre of 0.05M solution of silver nitrate to start the precipitation of AgBr is:
(A) $6.2\times {{10}^{-5}}$ g
(B) $5.0\times {{10}^{-8}}g$
(C) $1.2\times {{10}^{-10}}g$
(D) $1.2\times {{10}^{-9}}g$
Answer
135.6k+ views
Hint: The solubility product constant ${{K}_{sp}}$ is the equilibrium constant for a solid substance dissolving in an aqueous solution. It represents the level at which a solute dissolves in solution. The more soluble substance means it has a higher solubility product value. Solubility products were only applicable for sparingly soluble ionic compounds.
Complete step by step solution:
Given the value solubility product of silver bromide is,
\[{{K}_{sp}}[AgBr]=[A{{g}^{+}}][B{{r}^{-}}]=5X{{10}^{-13}}--(1)\]
Given, the concentration of silver nitrate = 0.05M
\[[AgN{{O}_{3}}]=0.05M\]
Silver nitrate is completely dissociated into silver ions and nitrate ions because it is a completely soluble substance. i.e, the concentration of silver nitrate is equal to concentration of silver ions usually.
\[\begin{align}
& AgN{{O}_{3}}\to A{{g}^{+}}+N{{O}_{3}}^{-} \\
& \therefore [AgN{{O}_{3}}]=[A{{g}^{+}}]=0.05M--(2) \\
\end{align}\]
From equation 1 and 2, substitute the value of $[A{{g}^{+}}]$ in equation (1), then
\[[B{{r}^{-}}]=\dfrac{5\times{{10}^{-13}}}{[A{{g}^{+}}]}=\dfrac{5\times {{10}^{-13}}}{0.05}=1\times{{10}^{-11}}M--(3)\]
Like silver nitrate, potassium bromide(KBr) salt which is dissociated completely. Hence, from the result equation (3), the concentration of bromide ion will equal to the concentration of KBr.
\[[B{{r}^{-}}]=[KBr]=1\times{{10}^{-11}}M--(4)\]
Given the molar mass of KBr (m)= 120 g/mole,
The volume of the solution = 1L
The quantity of potassium bromide= concentration of KBr volume of solution X m
= $1\times{{10}^{-11}}moles/L \times 1L \times120 g/mole$
= $1.2\times {{10}^{-9}}g$
Therefore the amount of KBr required to precipitate AgBr is $1.2\times {{10}^{-9}}g$.
The correct answer is option D.
Note: Solubility products cannot be used for normally soluble compounds like sodium chloride, silver nitrate, etc. interactions between the ions in the solution interfere with the simple equilibrium. The solubility product is a value that you get when the solution is saturated. If there is any solid present, cannot dissolve any more solid than there is in a saturated solution.
Complete step by step solution:
Given the value solubility product of silver bromide is,
\[{{K}_{sp}}[AgBr]=[A{{g}^{+}}][B{{r}^{-}}]=5X{{10}^{-13}}--(1)\]
Given, the concentration of silver nitrate = 0.05M
\[[AgN{{O}_{3}}]=0.05M\]
Silver nitrate is completely dissociated into silver ions and nitrate ions because it is a completely soluble substance. i.e, the concentration of silver nitrate is equal to concentration of silver ions usually.
\[\begin{align}
& AgN{{O}_{3}}\to A{{g}^{+}}+N{{O}_{3}}^{-} \\
& \therefore [AgN{{O}_{3}}]=[A{{g}^{+}}]=0.05M--(2) \\
\end{align}\]
From equation 1 and 2, substitute the value of $[A{{g}^{+}}]$ in equation (1), then
\[[B{{r}^{-}}]=\dfrac{5\times{{10}^{-13}}}{[A{{g}^{+}}]}=\dfrac{5\times {{10}^{-13}}}{0.05}=1\times{{10}^{-11}}M--(3)\]
Like silver nitrate, potassium bromide(KBr) salt which is dissociated completely. Hence, from the result equation (3), the concentration of bromide ion will equal to the concentration of KBr.
\[[B{{r}^{-}}]=[KBr]=1\times{{10}^{-11}}M--(4)\]
Given the molar mass of KBr (m)= 120 g/mole,
The volume of the solution = 1L
The quantity of potassium bromide= concentration of KBr volume of solution X m
= $1\times{{10}^{-11}}moles/L \times 1L \times120 g/mole$
= $1.2\times {{10}^{-9}}g$
Therefore the amount of KBr required to precipitate AgBr is $1.2\times {{10}^{-9}}g$.
The correct answer is option D.
Note: Solubility products cannot be used for normally soluble compounds like sodium chloride, silver nitrate, etc. interactions between the ions in the solution interfere with the simple equilibrium. The solubility product is a value that you get when the solution is saturated. If there is any solid present, cannot dissolve any more solid than there is in a saturated solution.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

Thermodynamics Class 11 Notes: CBSE Chapter 5
