
Simplify the trigonometry expression \[\left[ {\dfrac{{\sin \theta }}{{\left( {1 - \cot \theta } \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {1 - \tan \theta } \right)}}} \right]\].
A. 0
B. 1
C. \[\cos \theta - \sin \theta \]
D. \[\cos \theta + \sin \theta \]
Answer
216k+ views
Hint: First we will rewrite \[\cot \theta \] and \[\tan \theta \] in terms of \[\sin \theta \] and \[\cos \theta \]. Then simplify each term. Then add or subtract both terms. Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] in the numerator and cancel out common term to get desired result.
Formula Used:
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step by step solution:
Given expression is \[\left[ {\dfrac{{\sin \theta }}{{\left( {1 - \cot \theta } \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {1 - \tan \theta } \right)}}} \right]\]
Now apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\] and \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ = \left[ {\dfrac{{\sin \theta }}{{\left( {1 - \dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {1 - \dfrac{{\sin \theta }}{{\cos \theta }}} \right)}}} \right]\]
Simplify the denominator of each term
\[ = \left[ {\dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}}} \right]\]
\[ = \left[ {\dfrac{{{{\sin }^2}\theta }}{{\sin \theta - \cos \theta }}} \right] + \left[ {\dfrac{{{{\cos }^2}\theta }}{{\cos \theta - \sin \theta }}} \right]\]
Take common -1 from the denominator of the second term
\[ = \left[ {\dfrac{{{{\sin }^2}\theta }}{{\sin \theta - \cos \theta }}} \right] - \left[ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\]
Now subtract both terms
\[ = \left[ {\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[ = \dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {\sin \theta + \cos \theta } \right)}}{{\sin \theta - \cos \theta }}\]
Cancel out \[\left( {\sin \theta - \cos \theta } \right)\]
\[ = \cos \theta + \sin \theta \]
Option D is the correct option.
Note: Students often confused with the formula \[{\sin ^2}\theta - {\cos ^2}\theta = 1\] and \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]. They put \[{\sin ^2}\theta - {\cos ^2}\theta = 1\] in the step \[\left[ {\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\] and get \[\dfrac{1}{{\sin \theta - \cos \theta }}\] which is a wrong result. The correct formula is \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] and in this step \[\left[ {\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\] we will apply \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] to get desired result.
Formula Used:
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step by step solution:
Given expression is \[\left[ {\dfrac{{\sin \theta }}{{\left( {1 - \cot \theta } \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {1 - \tan \theta } \right)}}} \right]\]
Now apply the formula \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\] and \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[ = \left[ {\dfrac{{\sin \theta }}{{\left( {1 - \dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {1 - \dfrac{{\sin \theta }}{{\cos \theta }}} \right)}}} \right]\]
Simplify the denominator of each term
\[ = \left[ {\dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}} \right] + \left[ {\dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}}} \right]\]
\[ = \left[ {\dfrac{{{{\sin }^2}\theta }}{{\sin \theta - \cos \theta }}} \right] + \left[ {\dfrac{{{{\cos }^2}\theta }}{{\cos \theta - \sin \theta }}} \right]\]
Take common -1 from the denominator of the second term
\[ = \left[ {\dfrac{{{{\sin }^2}\theta }}{{\sin \theta - \cos \theta }}} \right] - \left[ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\]
Now subtract both terms
\[ = \left[ {\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\]
Apply the formula \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[ = \dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {\sin \theta + \cos \theta } \right)}}{{\sin \theta - \cos \theta }}\]
Cancel out \[\left( {\sin \theta - \cos \theta } \right)\]
\[ = \cos \theta + \sin \theta \]
Option D is the correct option.
Note: Students often confused with the formula \[{\sin ^2}\theta - {\cos ^2}\theta = 1\] and \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]. They put \[{\sin ^2}\theta - {\cos ^2}\theta = 1\] in the step \[\left[ {\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\] and get \[\dfrac{1}{{\sin \theta - \cos \theta }}\] which is a wrong result. The correct formula is \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] and in this step \[\left[ {\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\sin \theta - \cos \theta }}} \right]\] we will apply \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\] to get desired result.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

