
Show that max and min values of $8\cos \theta - 15\sin \theta$ are 17 and -17 respectively.
Answer
144.3k+ views
Hint: Here, we will use the extreme values of the form $a\cos \theta + b\sin \theta
$ to find the max and min values.
Given,
$8\cos \theta - 15\sin \theta \to (1)$
Let us compare the equation (1) with $a\cos \theta + b\sin \theta $, we get
$a = 8,b = - 15$
As, we know the maximum and minimum values of $a\cos \theta + b\sin \theta $ are $\sqrt
{{a^2} + {b^2}} $ and -$\sqrt {{a^2} + {b^2}} $respectively.
Therefore, substituting the values of a and b, we get
$
\Rightarrow \max = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {{( - 15)}^2}} = \sqrt {64 + 225} =
\sqrt {289} = 17 \\
\Rightarrow \min = - \sqrt {{a^2} + {b^2}} = - \sqrt {{8^2} + {{( - 15)}^2}} = - \sqrt {64 + 225} = - \sqrt {289} = - 17 \\
$
Hence, the maximum value of $8\cos \theta - 15\sin \theta$ is 17 and minimum value of
$8\cos \theta - 15\sin \theta$ is -17.
Note: The maximum and minimum of the $a\cos \theta + b\sin \theta $ will differ only by
the sign of the value i.e.., the maximum value will have the positive sign whereas the minimum value will have the negative sign of the same value.
$ to find the max and min values.
Given,
$8\cos \theta - 15\sin \theta \to (1)$
Let us compare the equation (1) with $a\cos \theta + b\sin \theta $, we get
$a = 8,b = - 15$
As, we know the maximum and minimum values of $a\cos \theta + b\sin \theta $ are $\sqrt
{{a^2} + {b^2}} $ and -$\sqrt {{a^2} + {b^2}} $respectively.
Therefore, substituting the values of a and b, we get
$
\Rightarrow \max = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {{( - 15)}^2}} = \sqrt {64 + 225} =
\sqrt {289} = 17 \\
\Rightarrow \min = - \sqrt {{a^2} + {b^2}} = - \sqrt {{8^2} + {{( - 15)}^2}} = - \sqrt {64 + 225} = - \sqrt {289} = - 17 \\
$
Hence, the maximum value of $8\cos \theta - 15\sin \theta$ is 17 and minimum value of
$8\cos \theta - 15\sin \theta$ is -17.
Note: The maximum and minimum of the $a\cos \theta + b\sin \theta $ will differ only by
the sign of the value i.e.., the maximum value will have the positive sign whereas the minimum value will have the negative sign of the same value.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Physics Average Value and RMS Value JEE Main 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
