Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Show that max and min values of $8\cos \theta - 15\sin \theta$ are 17 and -17 respectively.

Last updated date: 23rd Jul 2024
Total views: 63.9k
Views today: 1.63k
Verified
63.9k+ views
Hint: Here, we will use the extreme values of the form $a\cos \theta + b\sin \theta$ to find the max and min values.

Given,
$8\cos \theta - 15\sin \theta \to (1)$
Let us compare the equation (1) with $a\cos \theta + b\sin \theta$, we get
$a = 8,b = - 15$
As, we know the maximum and minimum values of $a\cos \theta + b\sin \theta$ are $\sqrt {{a^2} + {b^2}}$ and -$\sqrt {{a^2} + {b^2}}$respectively.
Therefore, substituting the values of a and b, we get
$\Rightarrow \max = \sqrt {{a^2} + {b^2}} = \sqrt {{8^2} + {{( - 15)}^2}} = \sqrt {64 + 225} = \sqrt {289} = 17 \\ \Rightarrow \min = - \sqrt {{a^2} + {b^2}} = - \sqrt {{8^2} + {{( - 15)}^2}} = - \sqrt {64 + 225} = - \sqrt {289} = - 17 \\$
Hence, the maximum value of $8\cos \theta - 15\sin \theta$ is 17 and minimum value of
$8\cos \theta - 15\sin \theta$ is -17.
Note: The maximum and minimum of the $a\cos \theta + b\sin \theta$ will differ only by
the sign of the value i.e.., the maximum value will have the positive sign whereas the minimum value will have the negative sign of the same value.