
What is the relation between emissive power of a real body (E) and emissive power of a black body ($E_b$) when both are at same temperature? ; α = Absorptivity
(A) \[\dfrac{{{E_b}}}{E} = 1\]
(B) $\dfrac{{{E_b}}}{E} = \alpha $
(C) $\dfrac{E}{{{E_b}}} = 1$
(D) $\dfrac{E}{{{E_b}}} = \alpha $
Answer
232.8k+ views
Hint: The ratio of emissive power for a body to that of a black body is to be considered as absorptivity because the relation required is at same temperature.
Complete step-by-step solution
Emissive power of a body at a particular temperature can be defined as the energy emitted per second per unit surface area of the body within a unit wavelength range.
Absorptive power of a body at a particular temperature can be defined as the ratio of the amount of energy absorbed in a given time by the surface to the amount of energy incident on the surface at the same time.
According to Kirchhoff's law, it states that the ratio of emissive power to the absorptive power for a given wavelength at a given temperature is the same for all the bodies and is equal to the emissive power of a perfectly black body at that temperature.
$\dfrac{E}{\alpha } = {E_b}$
The condition is stated as the same temperature hence the ratio of E and $E_b$ is called absorptivity.
Hence the relation between them is
$\dfrac{E}{{{E_b}}} = \alpha $
And the correct option is D.
Note: If ε is the emissivity of the body,
1. For a perfectly black body ε=1
2. For highly polished body ε=0
3. For practical bodies it lies between zero and one.
Complete step-by-step solution
Emissive power of a body at a particular temperature can be defined as the energy emitted per second per unit surface area of the body within a unit wavelength range.
Absorptive power of a body at a particular temperature can be defined as the ratio of the amount of energy absorbed in a given time by the surface to the amount of energy incident on the surface at the same time.
According to Kirchhoff's law, it states that the ratio of emissive power to the absorptive power for a given wavelength at a given temperature is the same for all the bodies and is equal to the emissive power of a perfectly black body at that temperature.
$\dfrac{E}{\alpha } = {E_b}$
The condition is stated as the same temperature hence the ratio of E and $E_b$ is called absorptivity.
Hence the relation between them is
$\dfrac{E}{{{E_b}}} = \alpha $
And the correct option is D.
Note: If ε is the emissivity of the body,
1. For a perfectly black body ε=1
2. For highly polished body ε=0
3. For practical bodies it lies between zero and one.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

