
Rate of effusion of a gas depends upon:
A. Size of pinhole
B. Pressure
C. Temperature
D. Molecular mass
Answer
224.7k+ views
Hint: We know that gas particles have steady random motion and gas particles have kinetic energy thus tend to go through diffusion. As we know when a gas is made to pass through a fine hole made in the wall of the container under a difference of pressure, it is termed as effusion.
Complete step by step answer:
As we know from graham’s law that at a constant temperature and for constant pressure gradients the rates of effusion of diffusion gases are inversely proportional to the square root of their densities. Rate of effusion depends on density, temperature of the gas and pressure gradient. Mathematically it can be indicated as,
\[{\text{r}} \propto {\text{P}}\] Here P is pressure and r is rate of diffusion.
…… (1)
\[{\text{r}} \propto \dfrac{1}{{\sqrt {\text{M}} }}\] Here M is the number of moles.
…… (2)
Now equation (1) and (2) together can be written is as follows:
\[{\text{r}} \propto \dfrac{{\text{P}}}{{\sqrt {\text{M}} }}\]
Or, \[\dfrac{{{{\text{r}}_{\text{1}}}}}{{{{\text{r}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{1}}}}}{{{{\text{P}}_{\text{2}}}}}\sqrt {\dfrac{{{{\text{M}}_{\text{2}}}}}{{{{\text{M}}_{\text{1}}}}}} \]
Thus all options are correct.
Additional Information:
We know that diffusion is a process which involves the migration of a component in solution down a gradient of its own concentration, i.e., from a part of higher to a part of lower concentration.
Gas molecules consist of a large number of minute particles. Gas molecules are so tiny that we can neglect their actual volume fraction of the total volume which is occupied by gas.
Note:
Graham’s law is very useful for us. Because this law is used to calculate molecular weight, density, etc. of gases. However it should be noted Graham’s law is true only for gases diffusing under low pressure gradients.
Complete step by step answer:
As we know from graham’s law that at a constant temperature and for constant pressure gradients the rates of effusion of diffusion gases are inversely proportional to the square root of their densities. Rate of effusion depends on density, temperature of the gas and pressure gradient. Mathematically it can be indicated as,
\[{\text{r}} \propto {\text{P}}\] Here P is pressure and r is rate of diffusion.
…… (1)
\[{\text{r}} \propto \dfrac{1}{{\sqrt {\text{M}} }}\] Here M is the number of moles.
…… (2)
Now equation (1) and (2) together can be written is as follows:
\[{\text{r}} \propto \dfrac{{\text{P}}}{{\sqrt {\text{M}} }}\]
Or, \[\dfrac{{{{\text{r}}_{\text{1}}}}}{{{{\text{r}}_{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{P}}_{\text{1}}}}}{{{{\text{P}}_{\text{2}}}}}\sqrt {\dfrac{{{{\text{M}}_{\text{2}}}}}{{{{\text{M}}_{\text{1}}}}}} \]
Thus all options are correct.
Additional Information:
We know that diffusion is a process which involves the migration of a component in solution down a gradient of its own concentration, i.e., from a part of higher to a part of lower concentration.
Gas molecules consist of a large number of minute particles. Gas molecules are so tiny that we can neglect their actual volume fraction of the total volume which is occupied by gas.
Note:
Graham’s law is very useful for us. Because this law is used to calculate molecular weight, density, etc. of gases. However it should be noted Graham’s law is true only for gases diffusing under low pressure gradients.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

