
What is the principal argument of $\left( { - 1, - i} \right)$, where $i = \sqrt { - 1} $?
$
(a){\text{ }}\dfrac{\pi }{4} \\
(b){\text{ }}\dfrac{{ - \pi }}{4} \\
(c){\text{ }}\dfrac{{ - 3\pi }}{4} \\
(d){\text{ }}\dfrac{{3\pi }}{4} \\
$
Answer
217.5k+ views
Hint: In this question we have to find the principal argument of the given coordinates. Now a complex number z can be written in the form of $x + iy$ where x is the real part and y is the imaginary part. Now the argument of any complex number z is ${\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$. Use this concept to find the principal argument. Keep in mind that here we are asked about the principal argument and not any general argument, so solve accordingly.
Complete step-by-step answer:
We have to find out the principal argument of $\left( { - 1, - i} \right)$.
Now as we know the argument of $\left( {x + iy} \right)$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
But in the given coordinate both x and y are negative and we know x and y are both negative in the third quadrant. So, the principal argument of the given coordinate lies in the third quadrant.
Now first calculate the argument of given coordinate so, on comparing,
Y = -1 and x = -1
So, the argument of $\left( { - 1, - i} \right)$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{ - 1}}} \right) = {\tan ^{ - 1}}\left( 1 \right)$
Now as we know that the value of ${\tan ^{ - 1}}\left( 1 \right)$ is $\dfrac{\pi }{4}$ in the first quadrant.
And the value of ${\tan ^{ - 1}}\left( 1 \right)$ in third quadrant is $\left[ {\left( {\dfrac{\pi }{4} - \pi } \right) = \dfrac{{ - 3\pi }}{4}} \right]$ or $\left[ {\left( {\pi + \dfrac{\pi }{4}} \right) = \dfrac{{5\pi }}{4}} \right]$
So, the principal argument of $\left( { - 1, - i} \right)$ is $\dfrac{{ - 3\pi }}{4}$ or $\dfrac{{5\pi }}{4}$.
But in options $\dfrac{{5\pi }}{4}$ is not there.
So, the principal argument according to options is $\dfrac{{ - 3\pi }}{4}$.
Hence option (c) is correct.
Note: The note point here is we are asked to find the principal argument and not any general argument. The principal argument is a unique value of argument which always lies in the range $ - \pi < {\text{argz < }}\pi $, however a general argument is such that it repeats itself after a regular interval and is given as $2n\pi + {\text{principal argument}}$ where n is an integer.
Complete step-by-step answer:
We have to find out the principal argument of $\left( { - 1, - i} \right)$.
Now as we know the argument of $\left( {x + iy} \right)$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{y}{x}} \right)$
But in the given coordinate both x and y are negative and we know x and y are both negative in the third quadrant. So, the principal argument of the given coordinate lies in the third quadrant.
Now first calculate the argument of given coordinate so, on comparing,
Y = -1 and x = -1
So, the argument of $\left( { - 1, - i} \right)$ is $\theta = {\tan ^{ - 1}}\left( {\dfrac{{ - 1}}{{ - 1}}} \right) = {\tan ^{ - 1}}\left( 1 \right)$
Now as we know that the value of ${\tan ^{ - 1}}\left( 1 \right)$ is $\dfrac{\pi }{4}$ in the first quadrant.
And the value of ${\tan ^{ - 1}}\left( 1 \right)$ in third quadrant is $\left[ {\left( {\dfrac{\pi }{4} - \pi } \right) = \dfrac{{ - 3\pi }}{4}} \right]$ or $\left[ {\left( {\pi + \dfrac{\pi }{4}} \right) = \dfrac{{5\pi }}{4}} \right]$
So, the principal argument of $\left( { - 1, - i} \right)$ is $\dfrac{{ - 3\pi }}{4}$ or $\dfrac{{5\pi }}{4}$.
But in options $\dfrac{{5\pi }}{4}$ is not there.
So, the principal argument according to options is $\dfrac{{ - 3\pi }}{4}$.
Hence option (c) is correct.
Note: The note point here is we are asked to find the principal argument and not any general argument. The principal argument is a unique value of argument which always lies in the range $ - \pi < {\text{argz < }}\pi $, however a general argument is such that it repeats itself after a regular interval and is given as $2n\pi + {\text{principal argument}}$ where n is an integer.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

