
Oxidation state of Potassium in \[{{\rm{K}}_{\rm{2}}}{\rm{O,}}{{\rm{K}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}{\rm{,K}}{{\rm{O}}_{\rm{2}}}\] are respectively:
(1) +1,+1,+1
(2) +1,+2, +4
(3) +1,+2,+2
(4) +1,+4,+2
Answer
233.1k+ views
Hint: To undergo the formation of a chemical bond, the number of electrons an atom gains or loses is termed the oxidation state. The oxidation state can be of positive or negative value. It can also be zero.
Complete Step by Step Solution:
Let's understand the various oxidation states of Oxygen. In most compounds, the oxidation state shown by Oxygen is -2, which means, it can accept two electrons. But, there are some exceptions as p-block elements exhibit variable oxidation states.
The exceptions are as follows:
1) Oxygen exhibits oxidation state value of -1 in peroxides, that is\[{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}\] .
2) Oxygen exhibits oxidation state value of -1/2 in case of superoxides like\[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}\] .
3) Oxygen exhibits oxidation state value of +1 in case of \[{{\rm{F}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}\] .
Let’s find out oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\] . \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\]is Potassium oxide. So, the oxidation state of O in \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\]is -2. Let’s take x as the oxidation state of element K.
\[ \Rightarrow x \times 2 + \left( { - 2} \right) = 0\]
\[ \Rightarrow 2x - 2 = 0\]
\[ \Rightarrow 2x = 2\]
\[ \Rightarrow x = 1\]
Therefore, oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\]is +1.
Let’s find out the oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\] . \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\]is Potassium peroxide. So, the oxidation state of O in \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\]is -1. Let’s take x as the oxidation state of element K.
\[ \Rightarrow x \times 2 + 2 \times \left( { - 1} \right) = 0\]
\[ \Rightarrow 2x - 2 = 0\]
\[ \Rightarrow 2x = 2\]
\[ \Rightarrow x = 1\]
Therefore, oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\]is +1.
Let’s find out the oxidation state of element K in \[{\rm{K}}{{\rm{O}}_2}\] . \[{\rm{K}}{{\rm{O}}_2}\]is Potassium superoxide. So, the oxidation state of O in \[{\rm{K}}{{\rm{O}}_2}\]is -1/2. Let’s take x as the oxidation state of element K.
\[ \Rightarrow x + 2 \times \left( { - \dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow x - 1 = 0\]
\[ \Rightarrow x = 1\]
Therefore, the oxidation state of element K in \[{\rm{K}}{{\rm{O}}_2}\]is +1.
Hence, option(1) is the right answer.
Note: The bonding of Oxygen with more electronegative atoms than it, exhibits a positive state of Oxygen. The only electronegative atom other than Oxygen is Fluorine.
Complete Step by Step Solution:
Let's understand the various oxidation states of Oxygen. In most compounds, the oxidation state shown by Oxygen is -2, which means, it can accept two electrons. But, there are some exceptions as p-block elements exhibit variable oxidation states.
The exceptions are as follows:
1) Oxygen exhibits oxidation state value of -1 in peroxides, that is\[{{\rm{H}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}\] .
2) Oxygen exhibits oxidation state value of -1/2 in case of superoxides like\[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}\] .
3) Oxygen exhibits oxidation state value of +1 in case of \[{{\rm{F}}_{\rm{2}}}{{\rm{O}}_{\rm{2}}}\] .
Let’s find out oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\] . \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\]is Potassium oxide. So, the oxidation state of O in \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\]is -2. Let’s take x as the oxidation state of element K.
\[ \Rightarrow x \times 2 + \left( { - 2} \right) = 0\]
\[ \Rightarrow 2x - 2 = 0\]
\[ \Rightarrow 2x = 2\]
\[ \Rightarrow x = 1\]
Therefore, oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{\rm{O}}\]is +1.
Let’s find out the oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\] . \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\]is Potassium peroxide. So, the oxidation state of O in \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\]is -1. Let’s take x as the oxidation state of element K.
\[ \Rightarrow x \times 2 + 2 \times \left( { - 1} \right) = 0\]
\[ \Rightarrow 2x - 2 = 0\]
\[ \Rightarrow 2x = 2\]
\[ \Rightarrow x = 1\]
Therefore, oxidation state of element K in \[{{\rm{K}}_{\rm{2}}}{{\rm{O}}_2}\]is +1.
Let’s find out the oxidation state of element K in \[{\rm{K}}{{\rm{O}}_2}\] . \[{\rm{K}}{{\rm{O}}_2}\]is Potassium superoxide. So, the oxidation state of O in \[{\rm{K}}{{\rm{O}}_2}\]is -1/2. Let’s take x as the oxidation state of element K.
\[ \Rightarrow x + 2 \times \left( { - \dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow x - 1 = 0\]
\[ \Rightarrow x = 1\]
Therefore, the oxidation state of element K in \[{\rm{K}}{{\rm{O}}_2}\]is +1.
Hence, option(1) is the right answer.
Note: The bonding of Oxygen with more electronegative atoms than it, exhibits a positive state of Oxygen. The only electronegative atom other than Oxygen is Fluorine.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

