
What is the oxidation state of bromine in \[HBr{{O}_{3}}\]?
(A) –3
(B) –1
(C) 1
(D) 3
(E) 5
Answer
223.5k+ views
Hint: The oxidation states of all of the atoms in a neutral molecule must add up to zero. With this in mind, try and calculate the oxidation state of Br in the given compound.
Step-by-Step Solution:
Let us first understand what the oxidation state of an element in a compound really is before moving onto the calculation of Bromine in this particular compound.
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state, which may be positive, negative or zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic, with no covalent component.
The terms “oxidation state” and “oxidation number” are often used interchangeably. The transfer of electrons is described by the oxidation state of the molecule. One might mistake formal charge for oxidation state but they are different. Oxidation state is commonly used to determine the changes in redox reactions and is numerically similar to valence electrons, but different from formal charge. Formal charge determines the arrangement of atoms and the likelihood of the molecule existing.
Now, we know that the oxidation state of Hydrogen is +1 and that of Oxygen is -2 in a compound.
Applying this to \[HBr{{O}_{3}}\],
$\begin{align}
& 0=(1\times 1)+(OS\text{ of Bromine)}\times \text{1+(-2 }\times \text{ 3)} \\
& \Rightarrow \text{0 = 1 + (OS of Bromine) - 6} \\
& \Rightarrow \text{0 = -5 + (OS of Bromine)} \\
& \Rightarrow 5\text{ = OS of Bromine} \\
\end{align}$
Therefore, the oxidation state of Bromine in \[HBr{{O}_{3}}\] is +5, making the answer to this question e) 5.
Note: Chemists use oxidation numbers (or oxidation states) to keep track of how many electrons an atom has. Oxidation numbers don’t always correspond to real charges on molecules, and we can calculate oxidation numbers for atoms that are involved in covalent (as well as ionic) bonding.
Step-by-Step Solution:
Let us first understand what the oxidation state of an element in a compound really is before moving onto the calculation of Bromine in this particular compound.
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state, which may be positive, negative or zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic, with no covalent component.
The terms “oxidation state” and “oxidation number” are often used interchangeably. The transfer of electrons is described by the oxidation state of the molecule. One might mistake formal charge for oxidation state but they are different. Oxidation state is commonly used to determine the changes in redox reactions and is numerically similar to valence electrons, but different from formal charge. Formal charge determines the arrangement of atoms and the likelihood of the molecule existing.
Now, we know that the oxidation state of Hydrogen is +1 and that of Oxygen is -2 in a compound.
Applying this to \[HBr{{O}_{3}}\],
$\begin{align}
& 0=(1\times 1)+(OS\text{ of Bromine)}\times \text{1+(-2 }\times \text{ 3)} \\
& \Rightarrow \text{0 = 1 + (OS of Bromine) - 6} \\
& \Rightarrow \text{0 = -5 + (OS of Bromine)} \\
& \Rightarrow 5\text{ = OS of Bromine} \\
\end{align}$
Therefore, the oxidation state of Bromine in \[HBr{{O}_{3}}\] is +5, making the answer to this question e) 5.
Note: Chemists use oxidation numbers (or oxidation states) to keep track of how many electrons an atom has. Oxidation numbers don’t always correspond to real charges on molecules, and we can calculate oxidation numbers for atoms that are involved in covalent (as well as ionic) bonding.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: City Intimation Slip Expected Soon, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Redox Reaction Class 11 Chemistry Chapter 7 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

