
Out of the following hybrid orbitals, the one which forms the bond at angle \[120^\circ \] is
A) \[{d^2}s{p^3}\]
B) \[s{p^3}\]
C) \[s{p^2}\]
D) \[sp\]
Answer
220.5k+ views
Hint: The hybridization of a molecule decides its bond angle. Here, we will understand the bond angles shown by \[s{p^3}\], \[s{p^2}\] , \[sp\] and \[{d^2}s{p^3}\]hybridized molecule. The bond angle also determines molecular shape.
Complete step by step solution:Let’s first understand what hybridization is. This is the process of intermixing of orbitals to give a new group of orbitals possessing different shapes and energies.
Now, we will understand the bond angles of all the hybridized molecules.
The \[{d^2}s{p^3}\]hybridization means six electron groups surround the central atom. The surrounding groups are atoms bonded to the central atom and the count of lone pairs. So, its bond angle is \[90^\circ \]. For example, \[{\rm{S}}{{\rm{F}}_{\rm{6}}}\] is \[{d^2}s{p^3}\]hybridized.
The \[s{p^3}\] hybridized molecule has four electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[109^\circ 28'\] . For example, \[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
The \[s{p^2}\] hybridized molecule has three electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[120^\circ \] . For example, \[{\rm{B}}{{\rm{F}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
An \[sp\] hybridize molecule has two electron groups surrounding the central atom. So, the bond angle in an sp hybridized molecule is \[180^\circ \] . The carbon dioxide molecule is an \[sp\] hybridized molecule.
Therefore, option C is right.
Note: The hybridization also tells the geometry and shape of a molecule. If no lone pair is present, the \[s{p^3}\] hybridization denotes a tetrahedral molecule, the \[s{p^2}\] hybridization is for a trigonal planar and an \[sp\] hybridization denotes a linear molecule and the \[{d^2}s{p^3}\]hybridization is for an octahedral molecule. But, the presence of lone pairs alters the shapes of molecules.
Complete step by step solution:Let’s first understand what hybridization is. This is the process of intermixing of orbitals to give a new group of orbitals possessing different shapes and energies.
Now, we will understand the bond angles of all the hybridized molecules.
The \[{d^2}s{p^3}\]hybridization means six electron groups surround the central atom. The surrounding groups are atoms bonded to the central atom and the count of lone pairs. So, its bond angle is \[90^\circ \]. For example, \[{\rm{S}}{{\rm{F}}_{\rm{6}}}\] is \[{d^2}s{p^3}\]hybridized.
The \[s{p^3}\] hybridized molecule has four electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[109^\circ 28'\] . For example, \[{\rm{C}}{{\rm{H}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
The \[s{p^2}\] hybridized molecule has three electron groups surrounding the central atom. So, the bond angle in this hybridized molecule is \[120^\circ \] . For example, \[{\rm{B}}{{\rm{F}}_{\rm{4}}}\] is \[s{p^3}\] hybridized.
An \[sp\] hybridize molecule has two electron groups surrounding the central atom. So, the bond angle in an sp hybridized molecule is \[180^\circ \] . The carbon dioxide molecule is an \[sp\] hybridized molecule.
Therefore, option C is right.
Note: The hybridization also tells the geometry and shape of a molecule. If no lone pair is present, the \[s{p^3}\] hybridization denotes a tetrahedral molecule, the \[s{p^2}\] hybridization is for a trigonal planar and an \[sp\] hybridization denotes a linear molecule and the \[{d^2}s{p^3}\]hybridization is for an octahedral molecule. But, the presence of lone pairs alters the shapes of molecules.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

