
One-fourth length of a spring of force constant K is cut away. The force constant of the remaining spring will be
A. \[\dfrac{3}{4}K \\ \]
B. \[\dfrac{4}{3}K \\ \]
C. 4K
D. K
Answer
161.1k+ views
Hint: Spring constant gives the stiffness of a spring and is equal to the force needed to stretch the spring divided by the distance that the spring is compressed or stretched.
Formula used:
The relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\]
Complete step by step solution:
A spring of constant K is cut away by \[\dfrac{1}{4}\] of its length, we have to find the spring constant of the remaining part of the spring. We know that spring constant is inversely proportional to length of the spring and let the original length of spring be l then the relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\,.......(1)\]
As the \[\dfrac{1}{4}\]of length l of spring is cut away then the remaining length l’ of spring will be,
\[l' = \dfrac{3}{4}l\]
Let the spring constant of remaining length be K’ then according to equation (1) it will be,
\[K' \propto \dfrac{4}{{3l}}\,.......(2)\]
On dividing equation (2) by equation (1) we get,
\[\dfrac{{K'}}{K} = \dfrac{4}{{3l}} \times l \\
\Rightarrow K' = \,\dfrac{4}{3}K\].
Hence, the constant of remaining length will be \[\dfrac{4}{3}K\].
Therefore, option B is the correct answer.
Note: Springs having larger spring constant will have smaller displacement and one having smaller spring constant will have larger displacement, it always has positive magnitude because negative spring constant will mean that when a compressive force is applied to spring it will compress itself further, which is against the nature of a spring.
Formula used:
The relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\]
Complete step by step solution:
A spring of constant K is cut away by \[\dfrac{1}{4}\] of its length, we have to find the spring constant of the remaining part of the spring. We know that spring constant is inversely proportional to length of the spring and let the original length of spring be l then the relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\,.......(1)\]
As the \[\dfrac{1}{4}\]of length l of spring is cut away then the remaining length l’ of spring will be,
\[l' = \dfrac{3}{4}l\]
Let the spring constant of remaining length be K’ then according to equation (1) it will be,
\[K' \propto \dfrac{4}{{3l}}\,.......(2)\]
On dividing equation (2) by equation (1) we get,
\[\dfrac{{K'}}{K} = \dfrac{4}{{3l}} \times l \\
\Rightarrow K' = \,\dfrac{4}{3}K\].
Hence, the constant of remaining length will be \[\dfrac{4}{3}K\].
Therefore, option B is the correct answer.
Note: Springs having larger spring constant will have smaller displacement and one having smaller spring constant will have larger displacement, it always has positive magnitude because negative spring constant will mean that when a compressive force is applied to spring it will compress itself further, which is against the nature of a spring.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
