Answer
Verified
103.5k+ views
Hint: The boiling point and the freezing point of an unknown scale are given. We have to find the given Celcius in terms of that unknown scale. So use the formula of the relation between the readings of two different scales and put the given data and find the required term.
Formula used:
If $p$ be the temperature of the $W$ scale and $q$ be the temperature of the Celsius scale,
Then, $ = \dfrac{{p - {\text{LPF of W scale}}}}{{{\text{UPFof W scale}} - {\text{LPF of W scale}}}} = \dfrac{{q - {\text{LPF of celsius scale}}}}{{{\text{UPF of celsius scale}} - {\text{LPF of celsius scale}}}}$
UPF means the upper fixed point and LPF means the lower fixed point.
Complete step by step answer:
A scale is required to measure the temperature of an object correctly. The accepted protocol about the consideration of the scale is – the hot object has a high temperature and the cold object has a low temperature. That means if a hot and a cold object are kept in touch, the temperature of the hot object decreases, and the temperature of the cold object increases. In the end, they both reach the same temperature i.e in equilibrium.
The temperature scale is generally of four types – Celsius, Fahrenheit, Reaumur, and Kelvin.
The relation between any two scale’s reading of temperature is,
$ \Rightarrow \dfrac{{p - {\text{LPF of W scale}}}}{{{\text{UPF of W scale}} - {\text{LPF of W scale}}}} = \dfrac{{q - {\text{LPF of celsius scale}}}}{{{\text{UPF of celsius scale}} - {\text{LPF of celsius scale}}}}$
Where, $p$ be the temperature of the $W$ scale and $q$ be the temperature of the Celsius scale,
And, UPF means the upper fixed point and LPF means the lower fixed point.
Given, ${\text{UPFof W scale = }}239^\circ W$
$\Rightarrow {\text{LPF of W scale = }}39^\circ W$
$\Rightarrow q = 39^\circ C$
We know, ${\text{UPF of celsius scale = 100}}^\circ C$
$\Rightarrow {\text{UPFof celsius scale = }}0^\circ C$
So from the above relation, we get,
$ \Rightarrow \dfrac{{p - {\text{39}}^\circ {\text{C}}}}{{{\text{239}}^\circ {\text{C}} - {\text{39}}^\circ {\text{C}}}} = \dfrac{{{\text{39}}^\circ {\text{C}} - 0^\circ {\text{C}}}}{{{\text{100}}^\circ {\text{C}} - 0^\circ {\text{C}}}}$
$ \Rightarrow p - {\text{39}}^\circ {\text{C}} = \dfrac{{{\text{39}}^\circ {\text{C}}}}{{100^\circ {\text{C}}}} \times 200^\circ {\text{C}}$
$ \Rightarrow p - {\text{39}}^\circ {\text{C}} = {\text{78}}^\circ {\text{C}}$
$ \Rightarrow p = 117^\circ {\text{C}}$
So, the temperature on the scale $W$, corresponding to a temperature of ${\text{39}}^\circ {\text{C}}$ on the Celsius scale, will be $117^\circ {\text{C}}$.
Hence the right answer is in option $(D)$.
Note: We may show the upper fixed point and the lower fixed point for different temperature scales through a table:
Formula used:
If $p$ be the temperature of the $W$ scale and $q$ be the temperature of the Celsius scale,
Then, $ = \dfrac{{p - {\text{LPF of W scale}}}}{{{\text{UPFof W scale}} - {\text{LPF of W scale}}}} = \dfrac{{q - {\text{LPF of celsius scale}}}}{{{\text{UPF of celsius scale}} - {\text{LPF of celsius scale}}}}$
UPF means the upper fixed point and LPF means the lower fixed point.
Complete step by step answer:
A scale is required to measure the temperature of an object correctly. The accepted protocol about the consideration of the scale is – the hot object has a high temperature and the cold object has a low temperature. That means if a hot and a cold object are kept in touch, the temperature of the hot object decreases, and the temperature of the cold object increases. In the end, they both reach the same temperature i.e in equilibrium.
The temperature scale is generally of four types – Celsius, Fahrenheit, Reaumur, and Kelvin.
The relation between any two scale’s reading of temperature is,
$ \Rightarrow \dfrac{{p - {\text{LPF of W scale}}}}{{{\text{UPF of W scale}} - {\text{LPF of W scale}}}} = \dfrac{{q - {\text{LPF of celsius scale}}}}{{{\text{UPF of celsius scale}} - {\text{LPF of celsius scale}}}}$
Where, $p$ be the temperature of the $W$ scale and $q$ be the temperature of the Celsius scale,
And, UPF means the upper fixed point and LPF means the lower fixed point.
Given, ${\text{UPFof W scale = }}239^\circ W$
$\Rightarrow {\text{LPF of W scale = }}39^\circ W$
$\Rightarrow q = 39^\circ C$
We know, ${\text{UPF of celsius scale = 100}}^\circ C$
$\Rightarrow {\text{UPFof celsius scale = }}0^\circ C$
So from the above relation, we get,
$ \Rightarrow \dfrac{{p - {\text{39}}^\circ {\text{C}}}}{{{\text{239}}^\circ {\text{C}} - {\text{39}}^\circ {\text{C}}}} = \dfrac{{{\text{39}}^\circ {\text{C}} - 0^\circ {\text{C}}}}{{{\text{100}}^\circ {\text{C}} - 0^\circ {\text{C}}}}$
$ \Rightarrow p - {\text{39}}^\circ {\text{C}} = \dfrac{{{\text{39}}^\circ {\text{C}}}}{{100^\circ {\text{C}}}} \times 200^\circ {\text{C}}$
$ \Rightarrow p - {\text{39}}^\circ {\text{C}} = {\text{78}}^\circ {\text{C}}$
$ \Rightarrow p = 117^\circ {\text{C}}$
So, the temperature on the scale $W$, corresponding to a temperature of ${\text{39}}^\circ {\text{C}}$ on the Celsius scale, will be $117^\circ {\text{C}}$.
Hence the right answer is in option $(D)$.
Note: We may show the upper fixed point and the lower fixed point for different temperature scales through a table:
Temperature Scale | LFP | UFP | Sign |
Celcius | $0^\circ C$ | $100^\circ C$ | $^\circ C$ |
Fahrenheit | $32^\circ F$ | $212^\circ F$ | $^\circ F$ |
Reaumur | \[0^\circ R\] | \[80^\circ R\] | \[^\circ R\] |
Kelvin | $273K$ | $373K$ | $K$ |
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main
A physical quantity which has a direction A Must be class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main