
What will the nth term of the series 3+7+13+21+…..?
$
{\text{A}}{\text{. }}4n - 1 \\
{\text{B}}{\text{. }}{n^n} + 2n \\
{\text{C}}{\text{. }}{n^2} + n + 1 \\
{\text{D}}{\text{. }}{n^2} + 2 \\
$
Answer
161.4k+ views
Hint: Here, we will proceed by considering all the nth terms given in the options and then will put n=1,2,3,.. in order to find the reassemble of the obtained values of the terms with those of the given series.
Complete step-by-step answer:
The given sum of series is 3+7+13+21+…..
Let us consider all the nth terms given by obtains mentioned in the problem.
Consider the nth term as ${a_n} = 4n - 1$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = 4n - 1$, we get
${a_1} = \left( {4 \times 1} \right) - 1 = 4 - 1 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = 4n - 1$, we get
${a_2} = \left( {4 \times 2} \right) - 1 = 8 - 1 = 7$
Put n=3 for the third term of the series whose nth term is given by ${a_n} = 4n - 1$, we get
${a_3} = \left( {4 \times 3} \right) - 1 = 12 - 1 = 11$
But, since the third term of the given series is 13 which is not equal to 11 i.e., the third term of the series whose nth term is given by ${a_n} = 4n - 1$.
So, option A is incorrect.
Consider the nth term as ${a_n} = {n^n} + 2n$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = {n^n} + 2n$, we get
${a_1} = {\left( 1 \right)^1} + \left( {2 \times 1} \right) = 1 + 2 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = {n^n} + 2n$, we get
${a_2} = {\left( 2 \right)^2} + \left( {2 \times 2} \right) = 4 + 4 = 8$
But, since the second term of the given series is 7 which is not equal to 8 i.e., the second term of the series whose nth term is given by ${a_n} = {n^n} + 2n$.
So, option B is also incorrect.
Consider the nth term as ${a_n} = {n^2} + n + 1$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = {n^2} + n + 1$, we get
${a_1} = {\left( 1 \right)^2} + 1 + 1 = 1 + 2 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = {n^2} + n + 1$, we get
${a_2} = {\left( 2 \right)^2} + 2 + 1 = 4 + 3 = 7$
Put n=3 for the third term of the series whose nth term is given by ${a_n} = {n^2} + n + 1$, we get
${a_3} = {\left( 3 \right)^2} + 3 + 1 = 9 + 4 = 13$
Here, these values are the same as those of the given series. Hence, the nth term of the given series is given by ${a_n} = {n^2} + n + 1$.
So, option C is correct.
Consider the nth term as ${a_n} = {n^2} + 2$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = {n^2} + 2$, we get
${a_1} = {\left( 1 \right)^2} + 2 = 1 + 2 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = {n^2} + 2$, we get
${a_2} = {\left( 2 \right)^2} + 2 = 4 + 2 = 6$
But, since the second term of the given series is 7 which is not equal to 6 i.e., the second term of the series whose nth term is given by ${a_n} = {n^2} + 2$.
So, option D is incorrect.
Note: In these types of problems, we eliminate the wrong options by putting different values of n starting from 1 in order to obtain first, second and so on up to that value of n which comes out to be different from those in the given series.
Complete step-by-step answer:
The given sum of series is 3+7+13+21+…..
Let us consider all the nth terms given by obtains mentioned in the problem.
Consider the nth term as ${a_n} = 4n - 1$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = 4n - 1$, we get
${a_1} = \left( {4 \times 1} \right) - 1 = 4 - 1 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = 4n - 1$, we get
${a_2} = \left( {4 \times 2} \right) - 1 = 8 - 1 = 7$
Put n=3 for the third term of the series whose nth term is given by ${a_n} = 4n - 1$, we get
${a_3} = \left( {4 \times 3} \right) - 1 = 12 - 1 = 11$
But, since the third term of the given series is 13 which is not equal to 11 i.e., the third term of the series whose nth term is given by ${a_n} = 4n - 1$.
So, option A is incorrect.
Consider the nth term as ${a_n} = {n^n} + 2n$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = {n^n} + 2n$, we get
${a_1} = {\left( 1 \right)^1} + \left( {2 \times 1} \right) = 1 + 2 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = {n^n} + 2n$, we get
${a_2} = {\left( 2 \right)^2} + \left( {2 \times 2} \right) = 4 + 4 = 8$
But, since the second term of the given series is 7 which is not equal to 8 i.e., the second term of the series whose nth term is given by ${a_n} = {n^n} + 2n$.
So, option B is also incorrect.
Consider the nth term as ${a_n} = {n^2} + n + 1$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = {n^2} + n + 1$, we get
${a_1} = {\left( 1 \right)^2} + 1 + 1 = 1 + 2 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = {n^2} + n + 1$, we get
${a_2} = {\left( 2 \right)^2} + 2 + 1 = 4 + 3 = 7$
Put n=3 for the third term of the series whose nth term is given by ${a_n} = {n^2} + n + 1$, we get
${a_3} = {\left( 3 \right)^2} + 3 + 1 = 9 + 4 = 13$
Here, these values are the same as those of the given series. Hence, the nth term of the given series is given by ${a_n} = {n^2} + n + 1$.
So, option C is correct.
Consider the nth term as ${a_n} = {n^2} + 2$.
Put n=1 for the first term of the series whose nth term is given by ${a_n} = {n^2} + 2$, we get
${a_1} = {\left( 1 \right)^2} + 2 = 1 + 2 = 3$
Put n=2 for the second term of the series whose nth term is given by ${a_n} = {n^2} + 2$, we get
${a_2} = {\left( 2 \right)^2} + 2 = 4 + 2 = 6$
But, since the second term of the given series is 7 which is not equal to 6 i.e., the second term of the series whose nth term is given by ${a_n} = {n^2} + 2$.
So, option D is incorrect.
Note: In these types of problems, we eliminate the wrong options by putting different values of n starting from 1 in order to obtain first, second and so on up to that value of n which comes out to be different from those in the given series.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
