Answer
Verified
377.5k+ views
Hint: Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$.As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\]. As the material of both the materials is the same thus density remains the same.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Formula used
Moment of Inertia (M.I.) of the solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
$\rho = \dfrac{M}{V}$ where$\rho $ is the density, $M$ is the mass, $V$ is the volume.
$V = \dfrac{{4\pi {R^3}}}{3}$ Where $R$is the radius and $V$ is the volume.
Complete step by step solution:
Let Mass and radius of the bigger sphere be $M$ and$R$.
So the moment of inertia is $I = \dfrac{{2M{R^2}}}{5}$
As this sphere is recast into 8 smaller spheres hence the mass of smaller spheres is \[\dfrac{M}{8}\] and let radius be $r$ .
As the material of both the materials is the same thus density remains the same from this we can calculate the radius r of the new smaller sphere formed.
From,
($\rho $ is the density, $M$ is the mass, $V$ is the volume)
$\rho = \dfrac{M}{V}$
Volume of a sphere of radius R is \[ {V_R} = \dfrac{{4\pi {R^3}}}{3}\]
For a sphere of mass $M$ and radius$R$,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}}$
Volume of a sphere of radius r is \[ {V_r}= \dfrac{{4\pi {r^3}}}{3}\]
For a sphere of mass \[\dfrac{M}{8}\] and radius $r$
$\rho = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
From the above two equation and as both spheres have density we can assert that,
$\rho = \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow \dfrac{M}{{\dfrac{{4\pi {R^3}}}{3}}} = \dfrac{{\dfrac{M}{8}}}{{\dfrac{{4\pi {r^3}}}{3}}}$
$ \Rightarrow {r^3} = \dfrac{{{R^3}}}{8}$
$ \Rightarrow r = \dfrac{R}{2}$
As the moment of inertia of solid sphere along its diameter is $I = \dfrac{{2M{R^2}}}{5}$
So the moment of inertia of the smaller sphere whose mass (M) is \[\dfrac{M}{8}\] and radius(R) is$\dfrac{R}{2}$
${I_{smaller-sphere}}= \dfrac{{2 \times \dfrac{M}{8} \times {{(\dfrac{R}{2})}^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}}= \dfrac{{2M{R^2}}}{{5 \times 32}}$
As $I = \dfrac{{2M{R^2}}}{5}$
$ \Rightarrow {I_{smaller-sphere}} = \dfrac{I}{{32}}$
Hence the answer to this question is (D) $\dfrac{I}{{32}}$
Note:
Always remember that $I = \dfrac{{2M{R^2}}}{5}$is the moment of inertia of solid sphere along its diameter and not $I = \dfrac{{2M{R^2}}}{3}$ which is the moment of inertia of hollow sphere along its diameter also be careful about the mentioned axis about which the moment of inertia is being written these small checks while attempting a question can save you from silly mistakes in the exam.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If the length of the pendulum is made 9 times and mass class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Which of the following facts regarding bond order is class 11 chemistry JEE_Main
If temperature of sun is decreased by 1 then the value class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A lens forms a sharp image on a screen On inserting class 12 physics JEE_MAIN