
What is the maximum value of the term independent of $t$ in the expansion of ${\left[ {t{x^{\frac{1}{5}}} + \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right]^{10}}$, where $x \in \left( {0,1} \right)$?
A. $\dfrac{{10!}}{{\sqrt 3 {{\left( {5!} \right)}^2}}}$
B. $\dfrac{{2 \cdot 10!}}{{3{{\left( {5!} \right)}^2}}}$
C. $\dfrac{{10!}}{{3{{\left( {5!} \right)}^2}}}$
D. $\dfrac{{2 \cdot 10!}}{{3\sqrt 3 {{\left( {5!} \right)}^2}}}$
Answer
216.3k+ views
Hint: Find the general term of the given binomial expression. Let the general term ${t_{r + 1}}$ be the term independent of $t$. Make an equation which shows the exponent of $t$ in ${t_{r + 1}}$ is zero. Solving it find the value of $r$. Substituting the value of $r$ in ${t_{r + 1}}$, you’ll get a function of $x$. Use second derivative test to find the maximum value of the term which is independent of $t$.
Formula Used:
General term of a binomial expression ${\left( {a + b} \right)^n}$ is the $\left( {r + 1} \right)$th term ${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$
Product rule of differentiation is $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
$\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
Complete step by step solution:
A binomial expression ${\left[ {t{x^{\frac{1}{5}}} + \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right]^{10}}$ is given.
Find the general term i.e. the $\left( {r + 1} \right)$th term of its expansion.
Let it be ${t_{r + 1}}$
Then ${t_{r + 1}} = {}^{10}{C_r}{\left( {t{x^{\frac{1}{5}}}} \right)^{10 - r}}{\left\{ {\dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right\}^r}$
$ = {}^{10}{C_r}{t^{10 - r}}{x^{\frac{{10 - r}}{5}}}\dfrac{{{{\left( {1 - x} \right)}^{\frac{r}{{10}}}}}}{{{t^r}}}$, applying the rule ${\left( {{a^m}} \right)^n} = {a^{mn}}$
$ = {}^{10}{C_r}{t^{10 - 2r}}{x^{\frac{{10 - r}}{5}}}{\left( {1 - x} \right)^{\frac{r}{{10}}}}$, applying the rule $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Let us find the term which is independent of $t$.
Let ${t_{r + 1}}$ be independent of $t$.
Then the exponent of ${t^{10 - 2r}}$ will be zero.
$10 - 2r = 0 \Rightarrow r = 5$
$\therefore $ The sixth term is independent of $t$.
Putting $r = 5$ in the expression of ${t_{r + 1}}$, we get
${t_6} = {}^{10}{C_5}{x^{\frac{{10 - 5}}{5}}}{\left( {1 - x} \right)^{\frac{5}{{10}}}}$
$ = {}^{10}{C_5}{x^1}{\left( {1 - x} \right)^{\frac{1}{2}}}$
$ = {}^{10}{C_5}x\sqrt {1 - x} $
Now, we have to find its maximum value.
Let $f\left( x \right) = {}^{10}{C_5}x\sqrt {1 - x} $
Apply the second derivative test to find its maximum value.
Differentiating with respect to $x$, we get
$f'\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right)$
Apply the product rule $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = x$ and $g\left( x \right) = \sqrt {1 - x} $, we get
$\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) + \sqrt {1 - x} \dfrac{d}{{dx}}\left( x \right)$
Use the formula $\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = 1 - x$ and $n = \dfrac{1}{2}$, we get
$\dfrac{d}{{dx}}{\left( {1 - x} \right)^{\frac{1}{2}}} = \dfrac{1}{2}{\left( {1 - x} \right)^{\frac{1}{2} - 1}}\dfrac{d}{{dx}}\left( {1 - x} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = \dfrac{1}{2}{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\left( { - 1} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = - \dfrac{1}{{2\sqrt {1 - x} }}$
Substituting $f\left( x \right) = x$ and $n = 1$, we get
$\dfrac{d}{{dx}}\left( x \right) = 1$
$\therefore \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\left( { - \dfrac{1}{{2\sqrt {1 - x} }}} \right) + \sqrt {1 - x} \left( 1 \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = - \dfrac{x}{{2\sqrt {1 - x} }} + \sqrt {1 - x} $
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = \dfrac{{ - x + 2\left( {1 - x} \right)}}{{2\sqrt {1 - x} }} = \dfrac{{ - x + 2 - 2x}}{{2\sqrt {1 - x} }} = \dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}$
$\therefore f'\left( x \right) = {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
Solve the equation $f'\left( x \right) = 0$ to find the critical points.
$ \Rightarrow {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right) = 0$
$ \Rightarrow 2 - 3x = 0$
$ \Rightarrow x = \dfrac{2}{3}$
So, the critical point is $x = \dfrac{2}{3}$
Again differentiating $f'\left( x \right)$ with respect to $x$, we get
$f''\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \dfrac{d}{{dx}}\left( {2 - 3x} \right) - \left( {2 - 3x} \right)\dfrac{d}{{dx}}\left( {2\sqrt {1 - x} } \right)}}{{{{\left( {2\sqrt {1 - x} } \right)}^2}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \left( { - 3} \right) - \left( {2 - 3x} \right) \times 2 \times \dfrac{1}{{2\sqrt {1 - x} }} \times \left( { - 1} \right)}}{{4\left( {1 - x} \right)}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6\left( {1 - x} \right) + \left( {2 - 3x} \right)}}{{4\left( {1 - x} \right)\sqrt {1 - x} }}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6 + 6x + 2 - 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
Putting $x = \dfrac{2}{3}$, we get
$f''\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3\left( {\dfrac{2}{3}} \right)}}{{4{{\left( {1 - \dfrac{2}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} < 0$
$\therefore $ The value of $f\left( x \right)$ is maximum at $x = \dfrac{2}{3}$ and the maximum value is given by $f\left( {\dfrac{2}{3}} \right)$
Now, $f\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left( {\dfrac{2}{3}} \right)\sqrt {1 - \dfrac{2}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{3} \times \sqrt {\dfrac{1}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{{3\sqrt 3 }} = \dfrac{{2 \cdot 10!}}{{3\sqrt 3 {{\left( {5!} \right)}^2}}}$
Option ‘D’ is correct
Note: Always remember that to solve such types of problems, at first you need to find out the general term and then proceed as per the question. Here at first, the general term has been found and then found the maximum value of that term using the second order derivative test.
Formula Used:
General term of a binomial expression ${\left( {a + b} \right)^n}$ is the $\left( {r + 1} \right)$th term ${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$
Product rule of differentiation is $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
$\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
Complete step by step solution:
A binomial expression ${\left[ {t{x^{\frac{1}{5}}} + \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right]^{10}}$ is given.
Find the general term i.e. the $\left( {r + 1} \right)$th term of its expansion.
Let it be ${t_{r + 1}}$
Then ${t_{r + 1}} = {}^{10}{C_r}{\left( {t{x^{\frac{1}{5}}}} \right)^{10 - r}}{\left\{ {\dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right\}^r}$
$ = {}^{10}{C_r}{t^{10 - r}}{x^{\frac{{10 - r}}{5}}}\dfrac{{{{\left( {1 - x} \right)}^{\frac{r}{{10}}}}}}{{{t^r}}}$, applying the rule ${\left( {{a^m}} \right)^n} = {a^{mn}}$
$ = {}^{10}{C_r}{t^{10 - 2r}}{x^{\frac{{10 - r}}{5}}}{\left( {1 - x} \right)^{\frac{r}{{10}}}}$, applying the rule $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Let us find the term which is independent of $t$.
Let ${t_{r + 1}}$ be independent of $t$.
Then the exponent of ${t^{10 - 2r}}$ will be zero.
$10 - 2r = 0 \Rightarrow r = 5$
$\therefore $ The sixth term is independent of $t$.
Putting $r = 5$ in the expression of ${t_{r + 1}}$, we get
${t_6} = {}^{10}{C_5}{x^{\frac{{10 - 5}}{5}}}{\left( {1 - x} \right)^{\frac{5}{{10}}}}$
$ = {}^{10}{C_5}{x^1}{\left( {1 - x} \right)^{\frac{1}{2}}}$
$ = {}^{10}{C_5}x\sqrt {1 - x} $
Now, we have to find its maximum value.
Let $f\left( x \right) = {}^{10}{C_5}x\sqrt {1 - x} $
Apply the second derivative test to find its maximum value.
Differentiating with respect to $x$, we get
$f'\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right)$
Apply the product rule $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = x$ and $g\left( x \right) = \sqrt {1 - x} $, we get
$\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) + \sqrt {1 - x} \dfrac{d}{{dx}}\left( x \right)$
Use the formula $\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = 1 - x$ and $n = \dfrac{1}{2}$, we get
$\dfrac{d}{{dx}}{\left( {1 - x} \right)^{\frac{1}{2}}} = \dfrac{1}{2}{\left( {1 - x} \right)^{\frac{1}{2} - 1}}\dfrac{d}{{dx}}\left( {1 - x} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = \dfrac{1}{2}{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\left( { - 1} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = - \dfrac{1}{{2\sqrt {1 - x} }}$
Substituting $f\left( x \right) = x$ and $n = 1$, we get
$\dfrac{d}{{dx}}\left( x \right) = 1$
$\therefore \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\left( { - \dfrac{1}{{2\sqrt {1 - x} }}} \right) + \sqrt {1 - x} \left( 1 \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = - \dfrac{x}{{2\sqrt {1 - x} }} + \sqrt {1 - x} $
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = \dfrac{{ - x + 2\left( {1 - x} \right)}}{{2\sqrt {1 - x} }} = \dfrac{{ - x + 2 - 2x}}{{2\sqrt {1 - x} }} = \dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}$
$\therefore f'\left( x \right) = {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
Solve the equation $f'\left( x \right) = 0$ to find the critical points.
$ \Rightarrow {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right) = 0$
$ \Rightarrow 2 - 3x = 0$
$ \Rightarrow x = \dfrac{2}{3}$
So, the critical point is $x = \dfrac{2}{3}$
Again differentiating $f'\left( x \right)$ with respect to $x$, we get
$f''\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \dfrac{d}{{dx}}\left( {2 - 3x} \right) - \left( {2 - 3x} \right)\dfrac{d}{{dx}}\left( {2\sqrt {1 - x} } \right)}}{{{{\left( {2\sqrt {1 - x} } \right)}^2}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \left( { - 3} \right) - \left( {2 - 3x} \right) \times 2 \times \dfrac{1}{{2\sqrt {1 - x} }} \times \left( { - 1} \right)}}{{4\left( {1 - x} \right)}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6\left( {1 - x} \right) + \left( {2 - 3x} \right)}}{{4\left( {1 - x} \right)\sqrt {1 - x} }}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6 + 6x + 2 - 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
Putting $x = \dfrac{2}{3}$, we get
$f''\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3\left( {\dfrac{2}{3}} \right)}}{{4{{\left( {1 - \dfrac{2}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} < 0$
$\therefore $ The value of $f\left( x \right)$ is maximum at $x = \dfrac{2}{3}$ and the maximum value is given by $f\left( {\dfrac{2}{3}} \right)$
Now, $f\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left( {\dfrac{2}{3}} \right)\sqrt {1 - \dfrac{2}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{3} \times \sqrt {\dfrac{1}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{{3\sqrt 3 }} = \dfrac{{2 \cdot 10!}}{{3\sqrt 3 {{\left( {5!} \right)}^2}}}$
Option ‘D’ is correct
Note: Always remember that to solve such types of problems, at first you need to find out the general term and then proceed as per the question. Here at first, the general term has been found and then found the maximum value of that term using the second order derivative test.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

