
What is the maximum value of the term independent of $t$ in the expansion of ${\left[ {t{x^{\frac{1}{5}}} + \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right]^{10}}$, where $x \in \left( {0,1} \right)$?
A. $\dfrac{{10!}}{{\sqrt 3 {{\left( {5!} \right)}^2}}}$
B. $\dfrac{{2 \cdot 10!}}{{3{{\left( {5!} \right)}^2}}}$
C. $\dfrac{{10!}}{{3{{\left( {5!} \right)}^2}}}$
D. $\dfrac{{2 \cdot 10!}}{{3\sqrt 3 {{\left( {5!} \right)}^2}}}$
Answer
162.6k+ views
Hint: Find the general term of the given binomial expression. Let the general term ${t_{r + 1}}$ be the term independent of $t$. Make an equation which shows the exponent of $t$ in ${t_{r + 1}}$ is zero. Solving it find the value of $r$. Substituting the value of $r$ in ${t_{r + 1}}$, you’ll get a function of $x$. Use second derivative test to find the maximum value of the term which is independent of $t$.
Formula Used:
General term of a binomial expression ${\left( {a + b} \right)^n}$ is the $\left( {r + 1} \right)$th term ${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$
Product rule of differentiation is $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
$\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
Complete step by step solution:
A binomial expression ${\left[ {t{x^{\frac{1}{5}}} + \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right]^{10}}$ is given.
Find the general term i.e. the $\left( {r + 1} \right)$th term of its expansion.
Let it be ${t_{r + 1}}$
Then ${t_{r + 1}} = {}^{10}{C_r}{\left( {t{x^{\frac{1}{5}}}} \right)^{10 - r}}{\left\{ {\dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right\}^r}$
$ = {}^{10}{C_r}{t^{10 - r}}{x^{\frac{{10 - r}}{5}}}\dfrac{{{{\left( {1 - x} \right)}^{\frac{r}{{10}}}}}}{{{t^r}}}$, applying the rule ${\left( {{a^m}} \right)^n} = {a^{mn}}$
$ = {}^{10}{C_r}{t^{10 - 2r}}{x^{\frac{{10 - r}}{5}}}{\left( {1 - x} \right)^{\frac{r}{{10}}}}$, applying the rule $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Let us find the term which is independent of $t$.
Let ${t_{r + 1}}$ be independent of $t$.
Then the exponent of ${t^{10 - 2r}}$ will be zero.
$10 - 2r = 0 \Rightarrow r = 5$
$\therefore $ The sixth term is independent of $t$.
Putting $r = 5$ in the expression of ${t_{r + 1}}$, we get
${t_6} = {}^{10}{C_5}{x^{\frac{{10 - 5}}{5}}}{\left( {1 - x} \right)^{\frac{5}{{10}}}}$
$ = {}^{10}{C_5}{x^1}{\left( {1 - x} \right)^{\frac{1}{2}}}$
$ = {}^{10}{C_5}x\sqrt {1 - x} $
Now, we have to find its maximum value.
Let $f\left( x \right) = {}^{10}{C_5}x\sqrt {1 - x} $
Apply the second derivative test to find its maximum value.
Differentiating with respect to $x$, we get
$f'\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right)$
Apply the product rule $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = x$ and $g\left( x \right) = \sqrt {1 - x} $, we get
$\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) + \sqrt {1 - x} \dfrac{d}{{dx}}\left( x \right)$
Use the formula $\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = 1 - x$ and $n = \dfrac{1}{2}$, we get
$\dfrac{d}{{dx}}{\left( {1 - x} \right)^{\frac{1}{2}}} = \dfrac{1}{2}{\left( {1 - x} \right)^{\frac{1}{2} - 1}}\dfrac{d}{{dx}}\left( {1 - x} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = \dfrac{1}{2}{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\left( { - 1} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = - \dfrac{1}{{2\sqrt {1 - x} }}$
Substituting $f\left( x \right) = x$ and $n = 1$, we get
$\dfrac{d}{{dx}}\left( x \right) = 1$
$\therefore \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\left( { - \dfrac{1}{{2\sqrt {1 - x} }}} \right) + \sqrt {1 - x} \left( 1 \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = - \dfrac{x}{{2\sqrt {1 - x} }} + \sqrt {1 - x} $
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = \dfrac{{ - x + 2\left( {1 - x} \right)}}{{2\sqrt {1 - x} }} = \dfrac{{ - x + 2 - 2x}}{{2\sqrt {1 - x} }} = \dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}$
$\therefore f'\left( x \right) = {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
Solve the equation $f'\left( x \right) = 0$ to find the critical points.
$ \Rightarrow {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right) = 0$
$ \Rightarrow 2 - 3x = 0$
$ \Rightarrow x = \dfrac{2}{3}$
So, the critical point is $x = \dfrac{2}{3}$
Again differentiating $f'\left( x \right)$ with respect to $x$, we get
$f''\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \dfrac{d}{{dx}}\left( {2 - 3x} \right) - \left( {2 - 3x} \right)\dfrac{d}{{dx}}\left( {2\sqrt {1 - x} } \right)}}{{{{\left( {2\sqrt {1 - x} } \right)}^2}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \left( { - 3} \right) - \left( {2 - 3x} \right) \times 2 \times \dfrac{1}{{2\sqrt {1 - x} }} \times \left( { - 1} \right)}}{{4\left( {1 - x} \right)}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6\left( {1 - x} \right) + \left( {2 - 3x} \right)}}{{4\left( {1 - x} \right)\sqrt {1 - x} }}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6 + 6x + 2 - 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
Putting $x = \dfrac{2}{3}$, we get
$f''\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3\left( {\dfrac{2}{3}} \right)}}{{4{{\left( {1 - \dfrac{2}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} < 0$
$\therefore $ The value of $f\left( x \right)$ is maximum at $x = \dfrac{2}{3}$ and the maximum value is given by $f\left( {\dfrac{2}{3}} \right)$
Now, $f\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left( {\dfrac{2}{3}} \right)\sqrt {1 - \dfrac{2}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{3} \times \sqrt {\dfrac{1}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{{3\sqrt 3 }} = \dfrac{{2 \cdot 10!}}{{3\sqrt 3 {{\left( {5!} \right)}^2}}}$
Option ‘D’ is correct
Note: Always remember that to solve such types of problems, at first you need to find out the general term and then proceed as per the question. Here at first, the general term has been found and then found the maximum value of that term using the second order derivative test.
Formula Used:
General term of a binomial expression ${\left( {a + b} \right)^n}$ is the $\left( {r + 1} \right)$th term ${t_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$
Product rule of differentiation is $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
$\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$
Complete step by step solution:
A binomial expression ${\left[ {t{x^{\frac{1}{5}}} + \dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right]^{10}}$ is given.
Find the general term i.e. the $\left( {r + 1} \right)$th term of its expansion.
Let it be ${t_{r + 1}}$
Then ${t_{r + 1}} = {}^{10}{C_r}{\left( {t{x^{\frac{1}{5}}}} \right)^{10 - r}}{\left\{ {\dfrac{{{{\left( {1 - x} \right)}^{\frac{1}{{10}}}}}}{t}} \right\}^r}$
$ = {}^{10}{C_r}{t^{10 - r}}{x^{\frac{{10 - r}}{5}}}\dfrac{{{{\left( {1 - x} \right)}^{\frac{r}{{10}}}}}}{{{t^r}}}$, applying the rule ${\left( {{a^m}} \right)^n} = {a^{mn}}$
$ = {}^{10}{C_r}{t^{10 - 2r}}{x^{\frac{{10 - r}}{5}}}{\left( {1 - x} \right)^{\frac{r}{{10}}}}$, applying the rule $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
Let us find the term which is independent of $t$.
Let ${t_{r + 1}}$ be independent of $t$.
Then the exponent of ${t^{10 - 2r}}$ will be zero.
$10 - 2r = 0 \Rightarrow r = 5$
$\therefore $ The sixth term is independent of $t$.
Putting $r = 5$ in the expression of ${t_{r + 1}}$, we get
${t_6} = {}^{10}{C_5}{x^{\frac{{10 - 5}}{5}}}{\left( {1 - x} \right)^{\frac{5}{{10}}}}$
$ = {}^{10}{C_5}{x^1}{\left( {1 - x} \right)^{\frac{1}{2}}}$
$ = {}^{10}{C_5}x\sqrt {1 - x} $
Now, we have to find its maximum value.
Let $f\left( x \right) = {}^{10}{C_5}x\sqrt {1 - x} $
Apply the second derivative test to find its maximum value.
Differentiating with respect to $x$, we get
$f'\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right)$
Apply the product rule $\dfrac{d}{{dx}}\left\{ {f\left( x \right)g\left( x \right)} \right\} = f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\} + g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = x$ and $g\left( x \right) = \sqrt {1 - x} $, we get
$\dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) + \sqrt {1 - x} \dfrac{d}{{dx}}\left( x \right)$
Use the formula $\dfrac{d}{{dx}}{\left\{ {f\left( x \right)} \right\}^n} = n{\left\{ {f\left( x \right)} \right\}^{n - 1}}\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\}$
Substituting $f\left( x \right) = 1 - x$ and $n = \dfrac{1}{2}$, we get
$\dfrac{d}{{dx}}{\left( {1 - x} \right)^{\frac{1}{2}}} = \dfrac{1}{2}{\left( {1 - x} \right)^{\frac{1}{2} - 1}}\dfrac{d}{{dx}}\left( {1 - x} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = \dfrac{1}{2}{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\left( { - 1} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {1 - x} } \right) = - \dfrac{1}{{2\sqrt {1 - x} }}$
Substituting $f\left( x \right) = x$ and $n = 1$, we get
$\dfrac{d}{{dx}}\left( x \right) = 1$
$\therefore \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = x\left( { - \dfrac{1}{{2\sqrt {1 - x} }}} \right) + \sqrt {1 - x} \left( 1 \right)$
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = - \dfrac{x}{{2\sqrt {1 - x} }} + \sqrt {1 - x} $
$ \Rightarrow \dfrac{d}{{dx}}\left( {x\sqrt {1 - x} } \right) = \dfrac{{ - x + 2\left( {1 - x} \right)}}{{2\sqrt {1 - x} }} = \dfrac{{ - x + 2 - 2x}}{{2\sqrt {1 - x} }} = \dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}$
$\therefore f'\left( x \right) = {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
Solve the equation $f'\left( x \right) = 0$ to find the critical points.
$ \Rightarrow {}^{10}{C_5}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right) = 0$
$ \Rightarrow 2 - 3x = 0$
$ \Rightarrow x = \dfrac{2}{3}$
So, the critical point is $x = \dfrac{2}{3}$
Again differentiating $f'\left( x \right)$ with respect to $x$, we get
$f''\left( x \right) = {}^{10}{C_5}\dfrac{d}{{dx}}\left( {\dfrac{{2 - 3x}}{{2\sqrt {1 - x} }}} \right)$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \dfrac{d}{{dx}}\left( {2 - 3x} \right) - \left( {2 - 3x} \right)\dfrac{d}{{dx}}\left( {2\sqrt {1 - x} } \right)}}{{{{\left( {2\sqrt {1 - x} } \right)}^2}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{2\sqrt {1 - x} \left( { - 3} \right) - \left( {2 - 3x} \right) \times 2 \times \dfrac{1}{{2\sqrt {1 - x} }} \times \left( { - 1} \right)}}{{4\left( {1 - x} \right)}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6\left( {1 - x} \right) + \left( {2 - 3x} \right)}}{{4\left( {1 - x} \right)\sqrt {1 - x} }}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 6 + 6x + 2 - 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
$ = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3x}}{{4{{\left( {1 - x} \right)}^{\frac{3}{2}}}}}} \right\}$
Putting $x = \dfrac{2}{3}$, we get
$f''\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 3\left( {\dfrac{2}{3}} \right)}}{{4{{\left( {1 - \dfrac{2}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 4 + 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} = {}^{10}{C_5}\left\{ {\dfrac{{ - 2}}{{4{{\left( {\dfrac{1}{3}} \right)}^{\frac{3}{2}}}}}} \right\} < 0$
$\therefore $ The value of $f\left( x \right)$ is maximum at $x = \dfrac{2}{3}$ and the maximum value is given by $f\left( {\dfrac{2}{3}} \right)$
Now, $f\left( {\dfrac{2}{3}} \right) = {}^{10}{C_5}\left( {\dfrac{2}{3}} \right)\sqrt {1 - \dfrac{2}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{3} \times \sqrt {\dfrac{1}{3}} = \dfrac{{10!}}{{5!5!}} \times \dfrac{2}{{3\sqrt 3 }} = \dfrac{{2 \cdot 10!}}{{3\sqrt 3 {{\left( {5!} \right)}^2}}}$
Option ‘D’ is correct
Note: Always remember that to solve such types of problems, at first you need to find out the general term and then proceed as per the question. Here at first, the general term has been found and then found the maximum value of that term using the second order derivative test.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
