
What is the maximum value of the function \[a\cos x + b\sin x\]?
A. \[a + b\]
B. \[a - b\]
C. \[\left| a \right| + \left| b \right|\]
D. \[{\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Answer
196.2k+ views
Hint Simplify the given function by multiplying the numerator and denominator by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \]. Consider \[\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }} = \cos \theta \] and \[\dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }} = \sin \theta \] then further simplify the function in the form \[\theta \]. In the end, substitute the maximum value of \[\cos \] and get the maximum value of the function.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
The range of the trigonometric function \[\cos\theta \] is \[\left[ { - 1,1} \right]\].
Complete step by step solution:
The given function is \[a\cos x + b\sin x\].
Let consider,
\[f\left( x \right) = a\cos x + b\sin x\]
Now multiply the numerator and denominator of the right-hand side of the above function by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\cos x + \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\sin x} \right]\]
Now consider \[\cos \theta = \dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\] and \[\sin \theta = \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos \theta \cos x + \sin \theta \sin x} \right]\]
Now apply the reverse formula \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos\left( {\theta - x} \right)} \right]\]
The maximum value of trigonometric function \[\cos\] is 1.
So, the maximum value of \[\cos\left( {\theta - x} \right)\] is 1.
Thus, the maximum value of \[f\left( x \right)\] is \[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} = {\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Hence the correct option is D.
Note: Student often confused with the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\]. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
The range of the trigonometric function \[\cos\theta \] is \[\left[ { - 1,1} \right]\].
Complete step by step solution:
The given function is \[a\cos x + b\sin x\].
Let consider,
\[f\left( x \right) = a\cos x + b\sin x\]
Now multiply the numerator and denominator of the right-hand side of the above function by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\cos x + \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\sin x} \right]\]
Now consider \[\cos \theta = \dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\] and \[\sin \theta = \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos \theta \cos x + \sin \theta \sin x} \right]\]
Now apply the reverse formula \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos\left( {\theta - x} \right)} \right]\]
The maximum value of trigonometric function \[\cos\] is 1.
So, the maximum value of \[\cos\left( {\theta - x} \right)\] is 1.
Thus, the maximum value of \[f\left( x \right)\] is \[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} = {\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Hence the correct option is D.
Note: Student often confused with the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\]. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 7 Binomial Theorem

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
