
What is the maximum value of the function \[a\cos x + b\sin x\]?
A. \[a + b\]
B. \[a - b\]
C. \[\left| a \right| + \left| b \right|\]
D. \[{\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Answer
232.8k+ views
Hint Simplify the given function by multiplying the numerator and denominator by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \]. Consider \[\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }} = \cos \theta \] and \[\dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }} = \sin \theta \] then further simplify the function in the form \[\theta \]. In the end, substitute the maximum value of \[\cos \] and get the maximum value of the function.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
The range of the trigonometric function \[\cos\theta \] is \[\left[ { - 1,1} \right]\].
Complete step by step solution:
The given function is \[a\cos x + b\sin x\].
Let consider,
\[f\left( x \right) = a\cos x + b\sin x\]
Now multiply the numerator and denominator of the right-hand side of the above function by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\cos x + \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\sin x} \right]\]
Now consider \[\cos \theta = \dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\] and \[\sin \theta = \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos \theta \cos x + \sin \theta \sin x} \right]\]
Now apply the reverse formula \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos\left( {\theta - x} \right)} \right]\]
The maximum value of trigonometric function \[\cos\] is 1.
So, the maximum value of \[\cos\left( {\theta - x} \right)\] is 1.
Thus, the maximum value of \[f\left( x \right)\] is \[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} = {\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Hence the correct option is D.
Note: Student often confused with the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\]. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
The range of the trigonometric function \[\cos\theta \] is \[\left[ { - 1,1} \right]\].
Complete step by step solution:
The given function is \[a\cos x + b\sin x\].
Let consider,
\[f\left( x \right) = a\cos x + b\sin x\]
Now multiply the numerator and denominator of the right-hand side of the above function by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\cos x + \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\sin x} \right]\]
Now consider \[\cos \theta = \dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\] and \[\sin \theta = \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos \theta \cos x + \sin \theta \sin x} \right]\]
Now apply the reverse formula \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos\left( {\theta - x} \right)} \right]\]
The maximum value of trigonometric function \[\cos\] is 1.
So, the maximum value of \[\cos\left( {\theta - x} \right)\] is 1.
Thus, the maximum value of \[f\left( x \right)\] is \[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} = {\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Hence the correct option is D.
Note: Student often confused with the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\]. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

