
What is the maximum value of the function \[a\cos x + b\sin x\]?
A. \[a + b\]
B. \[a - b\]
C. \[\left| a \right| + \left| b \right|\]
D. \[{\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Answer
233.1k+ views
Hint Simplify the given function by multiplying the numerator and denominator by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \]. Consider \[\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }} = \cos \theta \] and \[\dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }} = \sin \theta \] then further simplify the function in the form \[\theta \]. In the end, substitute the maximum value of \[\cos \] and get the maximum value of the function.
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
The range of the trigonometric function \[\cos\theta \] is \[\left[ { - 1,1} \right]\].
Complete step by step solution:
The given function is \[a\cos x + b\sin x\].
Let consider,
\[f\left( x \right) = a\cos x + b\sin x\]
Now multiply the numerator and denominator of the right-hand side of the above function by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\cos x + \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\sin x} \right]\]
Now consider \[\cos \theta = \dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\] and \[\sin \theta = \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos \theta \cos x + \sin \theta \sin x} \right]\]
Now apply the reverse formula \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos\left( {\theta - x} \right)} \right]\]
The maximum value of trigonometric function \[\cos\] is 1.
So, the maximum value of \[\cos\left( {\theta - x} \right)\] is 1.
Thus, the maximum value of \[f\left( x \right)\] is \[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} = {\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Hence the correct option is D.
Note: Student often confused with the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\]. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Formula used
\[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\]
The range of the trigonometric function \[\cos\theta \] is \[\left[ { - 1,1} \right]\].
Complete step by step solution:
The given function is \[a\cos x + b\sin x\].
Let consider,
\[f\left( x \right) = a\cos x + b\sin x\]
Now multiply the numerator and denominator of the right-hand side of the above function by \[\sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\cos x + \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\sin x} \right]\]
Now consider \[\cos \theta = \dfrac{a}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\] and \[\sin \theta = \dfrac{b}{{\sqrt {\left( {{a^2} + {b^2}} \right)} }}\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos \theta \cos x + \sin \theta \sin x} \right]\]
Now apply the reverse formula \[\cos\left( {A - B} \right) = \cos A \cos B + \sin A \sin B\].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \left[ {\cos\left( {\theta - x} \right)} \right]\]
The maximum value of trigonometric function \[\cos\] is 1.
So, the maximum value of \[\cos\left( {\theta - x} \right)\] is 1.
Thus, the maximum value of \[f\left( x \right)\] is \[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} \].
\[f\left( x \right) = \sqrt {\left( {{a^2} + {b^2}} \right)} = {\left( {{a^2} + {b^2}} \right)^{\dfrac{1}{2}}}\]
Hence the correct option is D.
Note: Student often confused with the formula \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\]. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

