
What is the maximum value of $F\left( x \right) = \begin{vmatrix}{{{\sin }^2}x}&{1 + {{\cos }^2}x}&{\cos 2x}\\{1 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{\sin 2x}\end{vmatrix}$, $x \in \mathbb{R}$?
A. $\sqrt 7 $
B. $\sqrt 5 $
C. $5$
D. $\dfrac{3}{4}$
Answer
208.2k+ views
Hint: Expand the determinant. The value of the determinant will be a function of $\sin x$ and $\cos x$. Using the fact that the value of $\sin x$ and $\cos x$ lies between $\left( { - 1} \right)$ and $\left( 1 \right)$, find the maximum value of the function $F\left( x \right)$.
Formula Used:
${\sin ^2}x + {\cos ^2}x = 1$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Complete step by step solution:
The given function is $F\left( x \right) = \begin{vmatrix}{{{\sin }^2}x}&{1 + {{\cos }^2}x}&{\cos 2x}\\{1 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{\sin 2x}\end{vmatrix}$, $x \in \mathbb{R}$
Expanding the determinant with respect to the first row, we get
$F\left( x \right) = {\sin ^2}x\left( {{{\cos }^2}x\sin 2x - \cos 2x{{\cos }^2}x} \right) - \left( {1 + {{\cos }^2}x} \right)\left\{ {\left( {1 + {{\sin }^2}x} \right)\sin 2x - \cos 2x{{\sin }^2}x} \right\} + \cos 2x\left\{ {\left( {1 + {{\sin }^2}x} \right){{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right\}$
$ = {\sin ^2}x{\cos ^2}x\left( {\sin 2x - \cos 2x} \right) - \left( {1 + {{\cos }^2}x} \right)\left( {\sin 2x + {{\sin }^2}x\sin 2x - \cos 2x{{\sin }^2}x} \right) + \cos 2x\left( {{{\cos }^2}x + {{\sin }^2}x{{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right)$
$ = {\sin ^2}x{\cos ^2}x\sin 2x - {\sin ^2}x{\cos ^2}x\cos 2x - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x - {\cos ^2}x{\sin ^2}x\sin 2x + {\cos ^2}x\cos 2x{\sin ^2}x + \cos 2x{\cos ^2}x$
$ = - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x + \cos 2x{\cos ^2}x$
$ = - \sin 2x\left( {1 + {{\sin }^2}x + {{\cos }^2}x} \right) + \cos 2x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)$
Use the identity ${\sin ^2}x + {\cos ^2}x = 1$
$F\left( x \right) = - 2\sin 2x + \cos 2x$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Here $A = - 2$, $B = 1$ and $\theta = 2x$
So, maximum value of $F\left( x \right)$ is $\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt {4 + 1} = \sqrt 5 $
Option ‘B’ is correct
Note: The sign convention for a $3 \times 3$ matrix is $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$. The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $ and the minimum value of the expression $A\sin \theta + B\cos \theta $ is $ - \sqrt {{A^2} + {B^2}} $.
Formula Used:
${\sin ^2}x + {\cos ^2}x = 1$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Complete step by step solution:
The given function is $F\left( x \right) = \begin{vmatrix}{{{\sin }^2}x}&{1 + {{\cos }^2}x}&{\cos 2x}\\{1 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{\sin 2x}\end{vmatrix}$, $x \in \mathbb{R}$
Expanding the determinant with respect to the first row, we get
$F\left( x \right) = {\sin ^2}x\left( {{{\cos }^2}x\sin 2x - \cos 2x{{\cos }^2}x} \right) - \left( {1 + {{\cos }^2}x} \right)\left\{ {\left( {1 + {{\sin }^2}x} \right)\sin 2x - \cos 2x{{\sin }^2}x} \right\} + \cos 2x\left\{ {\left( {1 + {{\sin }^2}x} \right){{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right\}$
$ = {\sin ^2}x{\cos ^2}x\left( {\sin 2x - \cos 2x} \right) - \left( {1 + {{\cos }^2}x} \right)\left( {\sin 2x + {{\sin }^2}x\sin 2x - \cos 2x{{\sin }^2}x} \right) + \cos 2x\left( {{{\cos }^2}x + {{\sin }^2}x{{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right)$
$ = {\sin ^2}x{\cos ^2}x\sin 2x - {\sin ^2}x{\cos ^2}x\cos 2x - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x - {\cos ^2}x{\sin ^2}x\sin 2x + {\cos ^2}x\cos 2x{\sin ^2}x + \cos 2x{\cos ^2}x$
$ = - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x + \cos 2x{\cos ^2}x$
$ = - \sin 2x\left( {1 + {{\sin }^2}x + {{\cos }^2}x} \right) + \cos 2x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)$
Use the identity ${\sin ^2}x + {\cos ^2}x = 1$
$F\left( x \right) = - 2\sin 2x + \cos 2x$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Here $A = - 2$, $B = 1$ and $\theta = 2x$
So, maximum value of $F\left( x \right)$ is $\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt {4 + 1} = \sqrt 5 $
Option ‘B’ is correct
Note: The sign convention for a $3 \times 3$ matrix is $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$. The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $ and the minimum value of the expression $A\sin \theta + B\cos \theta $ is $ - \sqrt {{A^2} + {B^2}} $.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Main 2022 (July 28th Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

