
What is the maximum value of $F\left( x \right) = \begin{vmatrix}{{{\sin }^2}x}&{1 + {{\cos }^2}x}&{\cos 2x}\\{1 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{\sin 2x}\end{vmatrix}$, $x \in \mathbb{R}$?
A. $\sqrt 7 $
B. $\sqrt 5 $
C. $5$
D. $\dfrac{3}{4}$
Answer
162k+ views
Hint: Expand the determinant. The value of the determinant will be a function of $\sin x$ and $\cos x$. Using the fact that the value of $\sin x$ and $\cos x$ lies between $\left( { - 1} \right)$ and $\left( 1 \right)$, find the maximum value of the function $F\left( x \right)$.
Formula Used:
${\sin ^2}x + {\cos ^2}x = 1$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Complete step by step solution:
The given function is $F\left( x \right) = \begin{vmatrix}{{{\sin }^2}x}&{1 + {{\cos }^2}x}&{\cos 2x}\\{1 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{\sin 2x}\end{vmatrix}$, $x \in \mathbb{R}$
Expanding the determinant with respect to the first row, we get
$F\left( x \right) = {\sin ^2}x\left( {{{\cos }^2}x\sin 2x - \cos 2x{{\cos }^2}x} \right) - \left( {1 + {{\cos }^2}x} \right)\left\{ {\left( {1 + {{\sin }^2}x} \right)\sin 2x - \cos 2x{{\sin }^2}x} \right\} + \cos 2x\left\{ {\left( {1 + {{\sin }^2}x} \right){{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right\}$
$ = {\sin ^2}x{\cos ^2}x\left( {\sin 2x - \cos 2x} \right) - \left( {1 + {{\cos }^2}x} \right)\left( {\sin 2x + {{\sin }^2}x\sin 2x - \cos 2x{{\sin }^2}x} \right) + \cos 2x\left( {{{\cos }^2}x + {{\sin }^2}x{{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right)$
$ = {\sin ^2}x{\cos ^2}x\sin 2x - {\sin ^2}x{\cos ^2}x\cos 2x - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x - {\cos ^2}x{\sin ^2}x\sin 2x + {\cos ^2}x\cos 2x{\sin ^2}x + \cos 2x{\cos ^2}x$
$ = - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x + \cos 2x{\cos ^2}x$
$ = - \sin 2x\left( {1 + {{\sin }^2}x + {{\cos }^2}x} \right) + \cos 2x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)$
Use the identity ${\sin ^2}x + {\cos ^2}x = 1$
$F\left( x \right) = - 2\sin 2x + \cos 2x$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Here $A = - 2$, $B = 1$ and $\theta = 2x$
So, maximum value of $F\left( x \right)$ is $\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt {4 + 1} = \sqrt 5 $
Option ‘B’ is correct
Note: The sign convention for a $3 \times 3$ matrix is $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$. The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $ and the minimum value of the expression $A\sin \theta + B\cos \theta $ is $ - \sqrt {{A^2} + {B^2}} $.
Formula Used:
${\sin ^2}x + {\cos ^2}x = 1$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Complete step by step solution:
The given function is $F\left( x \right) = \begin{vmatrix}{{{\sin }^2}x}&{1 + {{\cos }^2}x}&{\cos 2x}\\{1 + {{\sin }^2}x}&{{{\cos }^2}x}&{\cos 2x}\\{{{\sin }^2}x}&{{{\cos }^2}x}&{\sin 2x}\end{vmatrix}$, $x \in \mathbb{R}$
Expanding the determinant with respect to the first row, we get
$F\left( x \right) = {\sin ^2}x\left( {{{\cos }^2}x\sin 2x - \cos 2x{{\cos }^2}x} \right) - \left( {1 + {{\cos }^2}x} \right)\left\{ {\left( {1 + {{\sin }^2}x} \right)\sin 2x - \cos 2x{{\sin }^2}x} \right\} + \cos 2x\left\{ {\left( {1 + {{\sin }^2}x} \right){{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right\}$
$ = {\sin ^2}x{\cos ^2}x\left( {\sin 2x - \cos 2x} \right) - \left( {1 + {{\cos }^2}x} \right)\left( {\sin 2x + {{\sin }^2}x\sin 2x - \cos 2x{{\sin }^2}x} \right) + \cos 2x\left( {{{\cos }^2}x + {{\sin }^2}x{{\cos }^2}x - {{\cos }^2}x{{\sin }^2}x} \right)$
$ = {\sin ^2}x{\cos ^2}x\sin 2x - {\sin ^2}x{\cos ^2}x\cos 2x - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x - {\cos ^2}x{\sin ^2}x\sin 2x + {\cos ^2}x\cos 2x{\sin ^2}x + \cos 2x{\cos ^2}x$
$ = - \sin 2x - {\sin ^2}x\sin 2x + \cos 2x{\sin ^2}x - {\cos ^2}x\sin 2x + \cos 2x{\cos ^2}x$
$ = - \sin 2x\left( {1 + {{\sin }^2}x + {{\cos }^2}x} \right) + \cos 2x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)$
Use the identity ${\sin ^2}x + {\cos ^2}x = 1$
$F\left( x \right) = - 2\sin 2x + \cos 2x$
The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $
Here $A = - 2$, $B = 1$ and $\theta = 2x$
So, maximum value of $F\left( x \right)$ is $\sqrt {{{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2}} = \sqrt {4 + 1} = \sqrt 5 $
Option ‘B’ is correct
Note: The sign convention for a $3 \times 3$ matrix is $\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$. The maximum value of the expression $A\sin \theta + B\cos \theta $ is $\sqrt {{A^2} + {B^2}} $ and the minimum value of the expression $A\sin \theta + B\cos \theta $ is $ - \sqrt {{A^2} + {B^2}} $.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
