
What is the locus of a point whose difference of distance from points \[\left( { \pm 3,0} \right)\] is 4?
A. \[\dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{5} = 1\]
B. \[\dfrac{{{x^2}}}{5} - \dfrac{{{y^2}}}{4} = 1\]
C. \[\dfrac{{{x^2}}}{2} - \dfrac{{{y^2}}}{3} = 1\]
D. \[\dfrac{{{x^2}}}{3} - \dfrac{{{y^2}}}{2} = 1\]
Answer
216k+ views
Hint: First we will assume the coordinate the point whose locus we need to find. Then we will apply the distance formula of two points to find the distance of the point from the points \[\left( { \pm 3,0} \right)\]. Then equate the difference of distances to 4.
Formula used:
The distance between the points \[d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \]
Algebraical identity: \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step by step solution:
Assume the coordinate of the point is \[\left( {x,y} \right)\].
Apply the distance formula to find the distance between \[\left( {x,y} \right)\] and \[\left( {3,0} \right)\].
The distance between \[\left( {x,y} \right)\] and \[\left( {3,0} \right)\] is \[{d_1} = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 0} \right)}^2}} \]
\[ \Rightarrow {d_1} = \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Apply the distance formula to find the distance between \[\left( {x,y} \right)\] and \[\left( { - 3,0} \right)\].
The distance between \[\left( {x,y} \right)\] and \[\left( { - 3,0} \right)\] is \[{d_2} = \sqrt {{{\left( {x - \left( { - 3} \right)} \right)}^2} + {{\left( {y - 0} \right)}^2}} \]
\[ \Rightarrow {d_2} = \sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \]
Now find the difference between the distances:
\[{d_2} - {d_1} = \sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Equate the difference of distance to 4:
\[\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 4\]
Take square both sides
\[ \Rightarrow {\left( {\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} } \right)^2} = {4^2}\]
Apply the algebraical identity:
\[ \Rightarrow {\left( {\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
\[ \Rightarrow {\left( {x + 3} \right)^2} + {y^2} + {\left( {x - 3} \right)^2} + {y^2} - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
\[ \Rightarrow {x^2} + 6x + 9 + {y^2} + {x^2} - 6x + 9 + {y^2} - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
\[ \Rightarrow 2{x^2} + 2{y^2} + 18 - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
Rewrite the equation:
\[ \Rightarrow 2{x^2} + 2{y^2} + 18 - 16 = 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
\[ \Rightarrow 2{x^2} + 2{y^2} + 2 = 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Take common 2 from the left side expression:
\[ \Rightarrow 2\left( {{x^2} + {y^2} + 1} \right) = 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Cancel out 2 from left side and right-side expression
\[ \Rightarrow \left( {{x^2} + {y^2} + 1} \right) = \sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Take square both sides
\[ \Rightarrow {\left( {{x^2} + {y^2} + 1} \right)^2} = {\left( {\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} } \right)^2}\]
Apply the algebraical identity:
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = \left[ {{{\left( {x + 3} \right)}^2} + {y^2}} \right]\left[ {{{\left( {x - 3} \right)}^2} + y} \right]\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = \left[ {{x^2} + 6x + 9 + {y^2}} \right]\left[ {{x^2} - 6x + 9 + {y^2}} \right]\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = {\left( {{x^2} + 9 + {y^2}} \right)^2} - {\left( {6x} \right)^2}\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = {x^4} + 81 + {y^4} + 18{x^2} + 18{y^2} + 2{x^2}{y^2} - 36{x^2}\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} - {x^4} - 81 - {y^4} - 18{x^2} - 18{y^2} - 2{x^2}{y^2} + 36{x^2} = 0\]
\[ \Rightarrow 20{x^2} - 16{y^2} - 80 = 0\]
\[ \Rightarrow 20{x^2} - 16{y^2} = 80\]
Divide both sides by 80
\[ \Rightarrow \dfrac{{20{x^2}}}{{80}} - \dfrac{{16{y^2}}}{{80}} = \dfrac{{80}}{{80}}\]
\[ \Rightarrow \dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{5} = 1\]
The locus of the point is \[\dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{5} = 1\].
Hence option A is the correct option.
Note: Students often don’t understand the locus. The locus of a point is generally a geometrical shape. In the given question, we get a hyperbola.
Formula used:
The distance between the points \[d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} \]
Algebraical identity: \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\]
Complete step by step solution:
Assume the coordinate of the point is \[\left( {x,y} \right)\].
Apply the distance formula to find the distance between \[\left( {x,y} \right)\] and \[\left( {3,0} \right)\].
The distance between \[\left( {x,y} \right)\] and \[\left( {3,0} \right)\] is \[{d_1} = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 0} \right)}^2}} \]
\[ \Rightarrow {d_1} = \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Apply the distance formula to find the distance between \[\left( {x,y} \right)\] and \[\left( { - 3,0} \right)\].
The distance between \[\left( {x,y} \right)\] and \[\left( { - 3,0} \right)\] is \[{d_2} = \sqrt {{{\left( {x - \left( { - 3} \right)} \right)}^2} + {{\left( {y - 0} \right)}^2}} \]
\[ \Rightarrow {d_2} = \sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \]
Now find the difference between the distances:
\[{d_2} - {d_1} = \sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Equate the difference of distance to 4:
\[\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 4\]
Take square both sides
\[ \Rightarrow {\left( {\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} } \right)^2} = {4^2}\]
Apply the algebraical identity:
\[ \Rightarrow {\left( {\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
\[ \Rightarrow {\left( {x + 3} \right)^2} + {y^2} + {\left( {x - 3} \right)^2} + {y^2} - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
\[ \Rightarrow {x^2} + 6x + 9 + {y^2} + {x^2} - 6x + 9 + {y^2} - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
\[ \Rightarrow 2{x^2} + 2{y^2} + 18 - 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} = 16\]
Rewrite the equation:
\[ \Rightarrow 2{x^2} + 2{y^2} + 18 - 16 = 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
\[ \Rightarrow 2{x^2} + 2{y^2} + 2 = 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Take common 2 from the left side expression:
\[ \Rightarrow 2\left( {{x^2} + {y^2} + 1} \right) = 2\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Cancel out 2 from left side and right-side expression
\[ \Rightarrow \left( {{x^2} + {y^2} + 1} \right) = \sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} \]
Take square both sides
\[ \Rightarrow {\left( {{x^2} + {y^2} + 1} \right)^2} = {\left( {\sqrt {{{\left( {x + 3} \right)}^2} + {y^2}} \sqrt {{{\left( {x - 3} \right)}^2} + {y^2}} } \right)^2}\]
Apply the algebraical identity:
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = \left[ {{{\left( {x + 3} \right)}^2} + {y^2}} \right]\left[ {{{\left( {x - 3} \right)}^2} + y} \right]\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = \left[ {{x^2} + 6x + 9 + {y^2}} \right]\left[ {{x^2} - 6x + 9 + {y^2}} \right]\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = {\left( {{x^2} + 9 + {y^2}} \right)^2} - {\left( {6x} \right)^2}\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} = {x^4} + 81 + {y^4} + 18{x^2} + 18{y^2} + 2{x^2}{y^2} - 36{x^2}\]
\[ \Rightarrow {x^4} + {y^4} + 1 + 2{x^2} + 2{y^2} + 2{x^2}{y^2} - {x^4} - 81 - {y^4} - 18{x^2} - 18{y^2} - 2{x^2}{y^2} + 36{x^2} = 0\]
\[ \Rightarrow 20{x^2} - 16{y^2} - 80 = 0\]
\[ \Rightarrow 20{x^2} - 16{y^2} = 80\]
Divide both sides by 80
\[ \Rightarrow \dfrac{{20{x^2}}}{{80}} - \dfrac{{16{y^2}}}{{80}} = \dfrac{{80}}{{80}}\]
\[ \Rightarrow \dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{5} = 1\]
The locus of the point is \[\dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{5} = 1\].
Hence option A is the correct option.
Note: Students often don’t understand the locus. The locus of a point is generally a geometrical shape. In the given question, we get a hyperbola.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

