
Light of wavelength ′\[\lambda \]′ strikes a photosensitive surface and electrons are ejected with kinetic energy E. If the kinetic energy is to be increased to 2E, the wavelength must be changed to \[\lambda '\] where
A. \[\lambda ' = \dfrac{\lambda }{2}\]
B. \[\lambda ' = 2\lambda \]
C. \[\dfrac{\lambda }{2} < \lambda '\]
D. \[\lambda ' > \lambda \]
Answer
232.8k+ views
Hint: When the photon is incident on metal then it contains energy which is able to overcome the attractive force with which the valence electron is bound to the shell of the atom of the metal. If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The threshold wavelength of the metal is the wavelength corresponding to the minimum energy which is sufficient to overcome the attractive force which causes the valence electron to be bound to the shell of the atom of the metal. As the energy of the photon is inversely proportional to the wavelength, so for a minimum value of the energy, the wavelength should be the maximum allowed wavelength.
The kinetic energy of the ejected electron is E when the wavelength of the light is \[\lambda \]. Using the energy formula for the emitted electron,
\[E = \dfrac{{hc}}{\lambda } - \phi \ldots \ldots \left( i \right)\]
We need to increase the kinetic energy of the ejected electron to 2E. Let the required wavelength is \[\lambda '\]. Then using the energy formula for the ejected electron, we get
\[2E = \dfrac{{hc}}{{\lambda '}} - \phi \]
From equation (i),
\[2\left( {\dfrac{{hc}}{\lambda } - \phi } \right) = \dfrac{{hc}}{{\lambda '}} - \phi \]
On simplifying, we get
\[\dfrac{{2hc}}{\lambda } - 2\phi = \dfrac{{hc}}{{\lambda '}} - \phi \\ \]
\[\Rightarrow \dfrac{{2hc}}{\lambda } - \dfrac{{hc}}{{\lambda '}} = \phi \\ \]
\[\Rightarrow \left( {\dfrac{2}{\lambda } - \dfrac{1}{{\lambda '}}} \right) = \dfrac{\phi }{{hc}}\]
The right hand side is positive, so
\[\dfrac{2}{\lambda } - \dfrac{1}{{\lambda '}} > 0\]
\[\Rightarrow \dfrac{2}{\lambda } > \dfrac{1}{{\lambda '}} \\ \]
\[\therefore \dfrac{\lambda }{2} < \lambda '\]
Hence, the required wavelength of the light must be greater than half of the initial wavelength of the light to increase the energy of the ejected electron twice the initial.
Therefore, the correct option is C.
Note: As we know that the frequency is inversely proportional to the wavelength. So for threshold frequency, the minimum value of the frequency of the photon contains sufficient energy to eject the electron from the metal.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The threshold wavelength of the metal is the wavelength corresponding to the minimum energy which is sufficient to overcome the attractive force which causes the valence electron to be bound to the shell of the atom of the metal. As the energy of the photon is inversely proportional to the wavelength, so for a minimum value of the energy, the wavelength should be the maximum allowed wavelength.
The kinetic energy of the ejected electron is E when the wavelength of the light is \[\lambda \]. Using the energy formula for the emitted electron,
\[E = \dfrac{{hc}}{\lambda } - \phi \ldots \ldots \left( i \right)\]
We need to increase the kinetic energy of the ejected electron to 2E. Let the required wavelength is \[\lambda '\]. Then using the energy formula for the ejected electron, we get
\[2E = \dfrac{{hc}}{{\lambda '}} - \phi \]
From equation (i),
\[2\left( {\dfrac{{hc}}{\lambda } - \phi } \right) = \dfrac{{hc}}{{\lambda '}} - \phi \]
On simplifying, we get
\[\dfrac{{2hc}}{\lambda } - 2\phi = \dfrac{{hc}}{{\lambda '}} - \phi \\ \]
\[\Rightarrow \dfrac{{2hc}}{\lambda } - \dfrac{{hc}}{{\lambda '}} = \phi \\ \]
\[\Rightarrow \left( {\dfrac{2}{\lambda } - \dfrac{1}{{\lambda '}}} \right) = \dfrac{\phi }{{hc}}\]
The right hand side is positive, so
\[\dfrac{2}{\lambda } - \dfrac{1}{{\lambda '}} > 0\]
\[\Rightarrow \dfrac{2}{\lambda } > \dfrac{1}{{\lambda '}} \\ \]
\[\therefore \dfrac{\lambda }{2} < \lambda '\]
Hence, the required wavelength of the light must be greater than half of the initial wavelength of the light to increase the energy of the ejected electron twice the initial.
Therefore, the correct option is C.
Note: As we know that the frequency is inversely proportional to the wavelength. So for threshold frequency, the minimum value of the frequency of the photon contains sufficient energy to eject the electron from the metal.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

