
Let\[f(x) = \sin x\]and \[g(x) = {\log _e}\left| x \right|\], If the ranges of the composition function \[fog\]and\[gof\]are \[{R_1}\]and\[{R_2}\]respectively, then
A. \[{R_1}\]=\[\left\{ {u: - 1 \le u < 1} \right\}\], \[{R_2}\]=\[\left\{ {v: - \infty < v < 0} \right\}\]
B. \[{R_1}\]=\[\left\{ {u: - \infty < u < 0} \right\}\],\[{R_2} = \left\{ {v: - \infty < v < 0} \right\}\]
C. \[{R_1}\]=\[\left\{ {u: - 1 < u < 1} \right\}\], \[{R_2} = \left\{ {v: - \infty < v < 0} \right\}\]
D. \[{R_1}\]=\[\left\{ {u: - 1 \le u \le 1} \right\}\],\[{R_2} = \left\{ {v: - \infty < v \le 0} \right\}\]
Answer
217.2k+ views
Hint: When we put the value of \[g(x)\]in \[f(x)\]we get \[fog\]and when we put the value of\[f(x)\]in \[g(x)\]we get \[gof\]
Complete step by step solution: Given that \[f(x) = \sin x\]and \[g(x) = {\log _e}\left| x \right|\], Now find \[fog\]and\[gof\]with domain and range
1st \[fog\]=\[f(gx) = \sin (gx) = \sin ({\log _e}\left| x \right|)\]
We know \[\left| x \right| \in R\], So \[{\log _e}\left| x \right| \in R\]
And \[\sin x\]vary from – 1 to 1, So for \[fog\]range \[{R_1}\]=\[\left[ { - 1,1} \right]\] --------(1)
Now, 2nd \[gof\]=\[g(fx) = g(\sin x) = {\log _e}\left| {\sin x} \right|\]
We know the value of \[\left| {\sin x} \right|\]vary from 0 to 1, So the range of \[{\log _e}\left| {\sin x} \right| = - \infty < {\log _e}\left| {\sin x} \right| \le 0\]
Hence range of \[{R_2}\]=\[{\log _e}\left| {\sin x} \right| = \left[ { - \infty ,0} \right]\] ------(2)
Taking both the equation we get \[{R_1}\]=\[\left\{ {u: - 1 \le u \le 1} \right\}\],\[{R_2} = \left\{ {v: - \infty < v \le 0} \right\}\]
Thus, Option (D) is correct.
Note:most of the student Students put wrong values to find composition function like andbecause of misunderstanding of the functions. So student must know the ranges of basic functions like modulus, linear, trigonometric functions, and understanding of composition function.
Complete step by step solution: Given that \[f(x) = \sin x\]and \[g(x) = {\log _e}\left| x \right|\], Now find \[fog\]and\[gof\]with domain and range
1st \[fog\]=\[f(gx) = \sin (gx) = \sin ({\log _e}\left| x \right|)\]
We know \[\left| x \right| \in R\], So \[{\log _e}\left| x \right| \in R\]
And \[\sin x\]vary from – 1 to 1, So for \[fog\]range \[{R_1}\]=\[\left[ { - 1,1} \right]\] --------(1)
Now, 2nd \[gof\]=\[g(fx) = g(\sin x) = {\log _e}\left| {\sin x} \right|\]
We know the value of \[\left| {\sin x} \right|\]vary from 0 to 1, So the range of \[{\log _e}\left| {\sin x} \right| = - \infty < {\log _e}\left| {\sin x} \right| \le 0\]
Hence range of \[{R_2}\]=\[{\log _e}\left| {\sin x} \right| = \left[ { - \infty ,0} \right]\] ------(2)
Taking both the equation we get \[{R_1}\]=\[\left\{ {u: - 1 \le u \le 1} \right\}\],\[{R_2} = \left\{ {v: - \infty < v \le 0} \right\}\]
Thus, Option (D) is correct.
Note:most of the student Students put wrong values to find composition function like andbecause of misunderstanding of the functions. So student must know the ranges of basic functions like modulus, linear, trigonometric functions, and understanding of composition function.
Recently Updated Pages
Differential Equations Explained: Guide for Students

Functional Equations Explained: Key Concepts & Practice

Graphical Methods of Vector Addition Explained Simply

Geometry of Complex Numbers Explained

Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

